Multiple scattering as a diffusion process

  • Jos Stam
Part of the Eurographics book series (EUROGRAPH)


Multiple scattering in participating media is generally a complex phenomenon. In the limit of an optically thick medium, i.e., when the mean free path of each photon is much smaller than the medium size, the effects of multiple scattering can be approximated by a diffusion process. We introduce this approximation from the radiative transfer literature to the computer graphics community and propose several numerical methods for its solution. We implemented both a multi-grid finite differences scheme and a finite-element blob method.


Diffusion Equation Phase Function Multiple Scattering Diffuse Intensity Diffusion Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Blasi, B. Le Saec, and C. Schlick. “A Rendering Algorithm for Discrete Volume Density Objects”. Computer Graphics Forum, 12 (3): 201–210, 1993.CrossRefGoogle Scholar
  2. 2.
    J. J. Duderstadt and W. R. Martin. Transport Theory. John Wiley and Sons, New York, 1979.MATHGoogle Scholar
  3. 3.
    D. S. Ebert and R. E. Parent. “Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer Techniques”. ACM Computer Graphics (SIGGRAPH ’90), 24 (4): 357–366, August 1990.CrossRefGoogle Scholar
  4. 4.
    W. Hackbusch. Multi-grid Methods and Applications. Springer Verlag, Berlin, 1985.MATHGoogle Scholar
  5. 5.
    P. Hanrahan and W. Krueger. “Reflection from Layered Surfaces due to Subsurface Scattering”. In Proceedings of SIGGRAPH ’93, pages 165–174. Addison-Wesley Publishing Company, August 1993.CrossRefGoogle Scholar
  6. 6.
    A. Ishimaru. VOLUME 1. Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory. Academic Press, New York, 1978.Google Scholar
  7. 7.
    J. T. Kajiya and B. P. von Herzen. “Ray Tracing Volume Densities”. ACM Computer Graphics (SIGGRAPH ’84), 18 (3): 165–174, July 1984.CrossRefGoogle Scholar
  8. 8.
    E. Langu6nou, K.Bouatouch, and M.Chelle. Global illumination in presence of participating media with general properties. In Proceedings of the 5 th Eurographics Workshop on Rendering, pages 69–85, Darmstadt, Germany, June 1994.Google Scholar
  9. 9.
    N. Max. Efficient light propagation for multiple anisotropic volume scattering. In Proceedings of the 5th Eurographics Workshop on Rendering, pages 87–104, Darmstadt, Germany, June 1994.Google Scholar
  10. 10.
    D. H. Norrie and G. de Vries. The Finite Element Method. Fundamentals and Applications. Academic Press, New York, 1973.Google Scholar
  11. 11.
    S. N. Pattanaik and S. P. Mudur. Computation of global illumination in a participating medium by monte carlo simulation. The Journal of Visualization and Computer Animation, 4 (3): 133–152, July–September 1993.CrossRefGoogle Scholar
  12. 12.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, Cambridge, 1988.MATHGoogle Scholar
  13. 13.
    H. E. Rushmeier and K. E. Torrance. “The Zonal Method for Calculating Light Intensities in the Presence of a Participating Medium”. ACM Computer Graphics (S1GGRAPH’87) 21 (4): 293–302, July 1987.CrossRefGoogle Scholar
  14. 14.
    G. Sakas. “Fast Rendering of Arbitrary Distributed Volume Densities”. In F. H. Post and W. Barth, editors, Proceedings of EUROGRAPHICS ’90, pages 519–530. Elsevier Science Publishers B.V. ( North-Holland ), September 1990.Google Scholar
  15. 15.
    R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corp., Washington DC, 1981.Google Scholar
  16. 16.
    F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. “A Global Illumination Solution for General Reflectance Distributions”. ACM Computer Graphics (SIGGRAPH ’91), 25 (4): 187–196, July 1991.CrossRefGoogle Scholar
  17. 17.
    J. Stam and E. Fiume. “Turbulent Wind Fields for Gaseous Phenomena”. In Proceedings of SIGGRAPH ’95, pages 369–376. Addison-Wesley Publishing Company, August 1993.Google Scholar
  18. 18.
    J. Stam and E. Fiume. “Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes”. To appear in SIGGRAPH ’95,1995.Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Jos Stam
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations