Skip to main content

Multiple scattering as a diffusion process

  • Conference paper
  • First Online:
Rendering Techniques ’95 (EGSR 1995)

Part of the book series: Eurographics ((EUROGRAPH))

Included in the following conference series:

Abstract

Multiple scattering in participating media is generally a complex phenomenon. In the limit of an optically thick medium, i.e., when the mean free path of each photon is much smaller than the medium size, the effects of multiple scattering can be approximated by a diffusion process. We introduce this approximation from the radiative transfer literature to the computer graphics community and propose several numerical methods for its solution. We implemented both a multi-grid finite differences scheme and a finite-element blob method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Blasi, B. Le Saec, and C. Schlick. “A Rendering Algorithm for Discrete Volume Density Objects”. Computer Graphics Forum, 12 (3): 201–210, 1993.

    Article  Google Scholar 

  2. J. J. Duderstadt and W. R. Martin. Transport Theory. John Wiley and Sons, New York, 1979.

    MATH  Google Scholar 

  3. D. S. Ebert and R. E. Parent. “Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer Techniques”. ACM Computer Graphics (SIGGRAPH ’90), 24 (4): 357–366, August 1990.

    Article  Google Scholar 

  4. W. Hackbusch. Multi-grid Methods and Applications. Springer Verlag, Berlin, 1985.

    Book  Google Scholar 

  5. P. Hanrahan and W. Krueger. “Reflection from Layered Surfaces due to Subsurface Scattering”. In Proceedings of SIGGRAPH ’93, pages 165–174. Addison-Wesley Publishing Company, August 1993.

    Chapter  Google Scholar 

  6. A. Ishimaru. VOLUME 1. Wave Propagation and Scattering in Random Media. Single Scattering and Transport Theory. Academic Press, New York, 1978.

    Google Scholar 

  7. J. T. Kajiya and B. P. von Herzen. “Ray Tracing Volume Densities”. ACM Computer Graphics (SIGGRAPH ’84), 18 (3): 165–174, July 1984.

    Article  Google Scholar 

  8. E. Langu6nou, K.Bouatouch, and M.Chelle. Global illumination in presence of participating media with general properties. In Proceedings of the 5 th Eurographics Workshop on Rendering, pages 69–85, Darmstadt, Germany, June 1994.

    Google Scholar 

  9. N. Max. Efficient light propagation for multiple anisotropic volume scattering. In Proceedings of the 5th Eurographics Workshop on Rendering, pages 87–104, Darmstadt, Germany, June 1994.

    Google Scholar 

  10. D. H. Norrie and G. de Vries. The Finite Element Method. Fundamentals and Applications. Academic Press, New York, 1973.

    MATH  Google Scholar 

  11. S. N. Pattanaik and S. P. Mudur. Computation of global illumination in a participating medium by monte carlo simulation. The Journal of Visualization and Computer Animation, 4 (3): 133–152, July–September 1993.

    Article  Google Scholar 

  12. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, Cambridge, 1988.

    MATH  Google Scholar 

  13. H. E. Rushmeier and K. E. Torrance. “The Zonal Method for Calculating Light Intensities in the Presence of a Participating Medium”. ACM Computer Graphics (S1GGRAPH’87) 21 (4): 293–302, July 1987.

    Article  Google Scholar 

  14. G. Sakas. “Fast Rendering of Arbitrary Distributed Volume Densities”. In F. H. Post and W. Barth, editors, Proceedings of EUROGRAPHICS ’90, pages 519–530. Elsevier Science Publishers B.V. ( North-Holland ), September 1990.

    Google Scholar 

  15. R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corp., Washington DC, 1981.

    Google Scholar 

  16. F. X. Sillion, J. R. Arvo, S. H. Westin, and D. P. Greenberg. “A Global Illumination Solution for General Reflectance Distributions”. ACM Computer Graphics (SIGGRAPH ’91), 25 (4): 187–196, July 1991.

    Article  Google Scholar 

  17. J. Stam and E. Fiume. “Turbulent Wind Fields for Gaseous Phenomena”. In Proceedings of SIGGRAPH ’95, pages 369–376. Addison-Wesley Publishing Company, August 1993.

    Google Scholar 

  18. J. Stam and E. Fiume. “Depicting Fire and Other Gaseous Phenomena Using Diffusion Processes”. To appear in SIGGRAPH ’95,1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

Stam, J. (1995). Multiple scattering as a diffusion process. In: Hanrahan, P.M., Purgathofer, W. (eds) Rendering Techniques ’95. EGSR 1995. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9430-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9430-0_5

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82733-8

  • Online ISBN: 978-3-7091-9430-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics