Global Illumination via Density-Estimation

  • Peter Shirley
  • Bretton Wade
  • Philip M. Hubbard
  • David Zareski
  • Bruce Walter
  • Donald P. Greenberg
Part of the Eurographics book series (EUROGRAPH)


This paper presents a new method for the production of view-independent global illumi-nation solutions of complex static environments. A key innovation of this new approach is its decomposition of the problem into a loosely coupled sequence of simple modules. This approach decouples the global energy transport computation from the construction of the displayable shaded representation of the environment. This decoupling eliminates many constraints of previous global illumination approaches, yielding accurate solutions for environments with non-diffuse surfaces and high geometric complexity.


Computer Graphic Computational Mesh Bidirectional Reflectance Distribution Function Global Illumination Memory Overhead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Appel. Some techniques for shading machine renderings of solids. In AFIPS 1968 Spring Joint Computing Conference, pages 37–49, 1968.Google Scholar
  2. 2.
    James Arvo. Backward ray tracing. Developments in Ray Tracing, pages 259-263, 1986. ACM Siggraph ’86 Course Notes.Google Scholar
  3. 3.
    Shenchang Eric Chen, Holly Rushmeier, Gavin Miller, and Douglass Turner. A progressive multi-pass method for global illumination. Computer Graphics, 25(4): 165–174, July 1991. ACM Siggraph ’91 Conference Proceedings.Google Scholar
  4. 4.
    Micheal F. Cohen, Donald P. Greenberg, David S. Immel, and Philip J. Brock. An efficient radiosity approach for realistic image synthesis. IEEE Computer Graphics & Applications, 6 (2): 26–35, 1986.CrossRefGoogle Scholar
  5. 5.
    Steven Collins. Adaptive splatting for specular to diffuse light transport. In Proceedings of the Fifth Eurographics Workshop on Rendering, pages 119–135, June 1994.Google Scholar
  6. 6.
    Reid Gershbein, Peter Schröder, and Pat Hanrahan. Textures and radiosity: Controlling emission and reflection with texture maps. Computer Graphics, pages 51–58, July 1994. ACM Siggraph ’94 Conference Proceedings.Google Scholar
  7. 7.
    E. Bruce Goldstein. Sensation and Perception. Wadsworth Publishing Co., Belmont, California, 1980.Google Scholar
  8. 8.
    Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics, 24(3): 145–154, August 1990. ACM Siggraph ’90 Conference Proceedings.Google Scholar
  9. 9.
    Henrik Wann Jensen and Niels Jorgen Christensen. Bidirectional monte carlo ray tracing of complex objects using photon maps. Computers & Graphics, 19 (2), 1995.Google Scholar
  10. 10.
    Dani Lischinski, Filippo Tampieri, and Donald P. Greenberg. Combining hierarchical radiosity and discontinuity meshing. Computer Graphics, pages 199–208, August 1993. ACM Siggraph CCFV93 Conference Proceedings.Google Scholar
  11. 11.
    Läszlö Neumann, Martin Feda, Manfred Kopp, and Werner Purgathofer. A new stochastic radiosity method for highly complex scenes. In Proceedings of the Fifth Eurographics Workshop on Rendering, pages 195–206, June 1994.Google Scholar
  12. 12.
    S. N. Pattanaik. Computational Methods for Global Illumination and Visualization of Complex 3D Environments. PhD thesis, Birla Institute of Technology & Science, February 1993.Google Scholar
  13. 13.
    Holly E. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating Media. PhD thesis, Cornell University, May 1988.Google Scholar
  14. 14.
    William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.Google Scholar
  15. 15.
    Peter Shirley. Time complexity of monte carlo radiosity. In Eurographics ’91, pages 459- 466, September 1991.Google Scholar
  16. 16.
    B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, 1985.Google Scholar
  17. 17.
    Brian E. Smits, James R. Arvo, and Donald P. Greenberg. A clustering algorithm for radiosity in complex environments. Computer Graphics, 28(3):435–442, July 1994. ACM Siggraph ’94 Conference Proceedings.Google Scholar
  18. 18.
    Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and ordering large radiosity calculations. Computer Graphics, 28(3):443–450, July 1994. ACM Siggraph ’94 Conference Proceedings.Google Scholar
  19. 19.
    Gregory J.Ward. The radiance lighting simulation and rendering system. Computer Graphics, 28(2):459–472, July 1994. ACM Siggraph ’94 Conference Proceedings.Google Scholar
  20. 20.
    Lee Westover. Footprint evaluation for volume randering. Computer Graphics, 24(4):367– 376, August 1990. ACM Siggraph ’90 Conference Proceedings.Google Scholar
  21. 21.
    David Zareski, Bretton Wade, Philip Hubbard, and Peter Shirley. Efficient parallel global illumination using density estimation. In Proceedings of the 1995 Parallel Rendering Symposium, 1995.Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Peter Shirley
    • 1
  • Bretton Wade
    • 1
  • Philip M. Hubbard
    • 1
  • David Zareski
    • 1
  • Bruce Walter
    • 1
  • Donald P. Greenberg
    • 1
  1. 1.Program of Computer GraphicsCornell UniversityIthacaUSA

Personalised recommendations