Molecular Potentials and Relativistic Effects

  • U. Kaldor
Part of the Few-Body Systems book series (FEWBODY, volume 8)


The Fock-space coupled-cluster method, a powerful and efficient scheme for the incorporation of electron correlation in atomic and molecular systems, is described, and representative applications are reviewed. The molecular potentials of alkali-metal dimers in their ground and excited states are calculated. A relativistic coupled-cluster method, starting from the four-component DiracCoulomb-Breit Hamiltonian, is applied to calculate transition energies of heavy atoms (Au is given as an example) and to determine the ground-state configurations (not known experimentally) of the superheavy elements 104 and 111. These are found to be different from the ground states of elements above them in the periodic table, due to relativistic effects. Finally, using a Douglas-Kroll transformation of the relativitic wave function, the potential function of AuH is investigated. Very good agreement with known experimental data is obtained in all cases. Large relativistic effects on the structure and spectra of heavy atoms and molecules are observed. Nonadditivity of relativistic and correlation energies is demonstrated.


Ionization Potential Heavy Atom Excitation Amplitude Superheavy Element Molecular Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hubbard: Proc. Roy. Soc. (London) A240, 539 (1957);MathSciNetADSMATHCrossRefGoogle Scholar
  2. J. Hubbard: ibid. A243, 336 (1958);MathSciNetMATHGoogle Scholar
  3. F. Coester: Nucl. Phys. 7, 421 (1958);CrossRefGoogle Scholar
  4. F. Coester, H. Kümmel: Nucl. Phys. 17, 477 (1960);MATHCrossRefGoogle Scholar
  5. H. Kümmel, K.H. Lührmann, J.G. Zabolitzky: Phys. Rept. 36, 1 (1978).ADSCrossRefGoogle Scholar
  6. 2.
    J. Čížek: J. Chem. Phys. 45, 4256 (1969);Google Scholar
  7. J. Čížek: Adv. Chem. Phys. 14, 35 (1969);CrossRefGoogle Scholar
  8. J. Paldus, J. Čížek, I. Shavitt: Phys. Rev. A 5, 50 (1972);ADSCrossRefGoogle Scholar
  9. J. Paldus: J. Chem. Phys. 67, 303 (1977).ADSCrossRefGoogle Scholar
  10. 3.
    R.J. Bartlett: J. Phys. Chem. 93, 1697 (1989).CrossRefGoogle Scholar
  11. 4.
    D. Mukherjee, S. Pal: Adv. Quantum Chem. 20, 291 (1989);ADSCrossRefGoogle Scholar
  12. U. Kaldor: Theor. Chim. Acta 80, 427 (1991);CrossRefGoogle Scholar
  13. C.M.L. Rittby, R.J. Bartlett: ibid. 80, 469 (1991); and references cited therein.Google Scholar
  14. 5.
    E. Ilyabaev, U. Kaldor: J. Chem. Phys. 97, 8455 (1992).ADSCrossRefGoogle Scholar
  15. 6.
    E. Eliav, U. Kaldor, Y. Ishikawa: Int. J. Quantum Chem. Symp. 28, 205 (1994).CrossRefGoogle Scholar
  16. 7.
    E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A 49, 1724 (1994).ADSCrossRefGoogle Scholar
  17. 8.
    E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A 50, 1121 (1994).ADSCrossRefGoogle Scholar
  18. 9.
    E. Eliav, U. Kaldor, Y. Ishikawa: Chem. Phys. Lett. 222, 82 (1994).CrossRefGoogle Scholar
  19. 10.
    E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A 51, 225 (1995).ADSCrossRefGoogle Scholar
  20. 11.
    E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. A in press.Google Scholar
  21. 12.
    E. Eliav, U. Kaldor, Y. Ishikawa: Phys. Rev. Lett. 74, 1079 (1995).ADSCrossRefGoogle Scholar
  22. 13.
    E. Eliav, U. Kaldor, P. Schwerdtfeger, B.A. Heß, Y. Ishikawa: Phys. Rev. Lett. 73, 3203 (1994).ADSCrossRefGoogle Scholar
  23. 14.
    M. Douglas, N.M. Kroll: Ann. Phys. (NY) 82, 89 (1974).ADSCrossRefGoogle Scholar
  24. 15.
    B.A. Heß: Phys. Rev. A 32, 756 (1985);ADSCrossRefGoogle Scholar
  25. B.A. Heß: ibid. 33, 3742 (1986).Google Scholar
  26. 16.
    G. Jansen, B.A. Heß: Phys. Rev. A 39, 6016 (1989).ADSCrossRefGoogle Scholar
  27. 17.
    R. Samzow, B.A. Heß, G. Jansen: J. Chem. Phys. 96, 1227 (1992).ADSCrossRefGoogle Scholar
  28. 18.
    U. Kaldor, B.A. Heß: Chem. Phys. Lett. 230, 1 (1994).ADSCrossRefGoogle Scholar
  29. 19.
    I. Lindgren, J. Morrison: Atomic Many-Body Theory, 2nd ed. Berlin: Springer-Verlag 1986.Google Scholar
  30. 20.
    J. Sucher: Phys. Rev. A 22, 348 (1980); Phys. Scr. 36, 271 (1987).Google Scholar
  31. 21.
    I. Lindgren: In Many-Body Methods in Quantum Chemistry, (Lecture Notes in Chemistry vol. 52), ed. U. Kaldor, p. 293. Heidelberg: Springer-Verlag 1989;Google Scholar
  32. I. Lindgren: Nucl. Instrum. Methods Phys. Res. Sec. B 31, 102 (1988).Google Scholar
  33. 22.
    Y. Ishikawa, H.M. Quiney: Phys. Rev. A 47, 1732 (1993);ADSCrossRefGoogle Scholar
  34. Y. Ishikawa: ibid. 42, 1142 (1990);MathSciNetGoogle Scholar
  35. Y. Ishikawa, R. Barrety, R.C. Binning: Chem. Phys. Lett. 121, 130 (1985).ADSCrossRefGoogle Scholar
  36. 23.
    U. Kaldor: Chem. Phys. 140, 1 (1990).ADSCrossRefGoogle Scholar
  37. 24.
    U. Kaldor: Israel J. Chem. 31, 345 (1991).Google Scholar
  38. 25.
    E. Ilyabaev, U. Kaldor: J. Chem. Phys. 98, 7126 (1993).ADSCrossRefGoogle Scholar
  39. 26.
    G. Hose, U. Kaldor: J. Phys. B 12, 3827 (1979);ADSCrossRefGoogle Scholar
  40. B. Jeziorski, H.J. Monkhorst: Phys. Rev. A 24, 1668 (1981).ADSCrossRefGoogle Scholar
  41. 27.
    P. Pyykkö: In The Effects of Relativity in Atoms, Molecules, and the Solid State, ed. S. Wilson, I.P. Grant, B.L. Gyorffy, p. 1. New York: Plenum Press 1991.Google Scholar
  42. 28.
    C.E. Moore: Atomic energy levels, Natl. Bur. Stand. (U.S.) Circ. No. 467. Washington: U.S. GPO 1948.Google Scholar
  43. 29.
    O.L. Keller: Radiochim. Acta 37, 169 (1984).Google Scholar
  44. 30.
    V.A. Glebov, L. Kasztura, V.S. Nefedov, B.L. Zhuikov: Radiochim. Acta 46, 117 (1989);Google Scholar
  45. E. Johnson, B. Fricke, O.L. Keller, C.W. Nestor Jr., T.C. Tucker: J. Chem. Phys. 93, 8041 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • U. Kaldor
    • 1
  1. 1.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations