Few-Body Problems in Atomic Physics

  • Ingvar Lindgren
  • Hans Persson
  • Sten Salomonson
  • Per Sunnergren
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 8)


By means of new experimental techniques heavy ions with a few electrons can now be studied with improved accuracy. In combination with new computational schemes such data can be used for testing QED at strong fields. In this paper we discuss in particular recent QED calculations on lithium-like uranium and on some helium-like ions and compare them with corresponding experimental results. The agreement between theory and experiments is generally very good. The helium-like ions are of particular interest in this respect. Here, it is possible to determine the two-electron QED contribution independently of the much larger one-electron part. Only a moderate improvement in the experimental accuracy is needed in order to make it possible, for the first time, to test QED effects at strong fields beyond the lowest-order Lamb shift.


Nuclear Charge Vacuum Polarization Lamb Shift Uehling Potential Nuclear Potential Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Lindgren, I. Martinsson, R. Schuch (eds): Heavy-Ion Spectroscopy and QED Ef f ects in Atomic Systems, Proceedings of the Nobel Symposium 85, Saltsjöbaden, Sweden 29 June - 3 July, 1992, Physica Scripta T46, (1993)Google Scholar
  2. 2.
    H.F. Beier et al.: Phys. Lett. A184, 435 (1994)CrossRefGoogle Scholar
  3. 3.
    J. Schweppe et al.: Phys. Rev. Lett. 66, 1434 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    I. Lindgren, H. Persson, S. Salomonson, A. Ynnerman: Phys. Rev. A 47, R4555 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Blundell: Phys. Rev. A46, 3762 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    R.E. Marrs, S.R. Schneider, Th. Stöhlker: Phys. Rev. A (submitted)Google Scholar
  7. 7.
    G. Drake: Can. J. Phys. 66, 586 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    P J Mohr: Ann. Phys. (NY) 88, 2652 (1974)Google Scholar
  9. P.J. Mohr: Phys. Rev. A 26, 2338 (1982)ADSCrossRefGoogle Scholar
  10. P. J. Mohr: Phys. Rev. A 46, 4421 (1992)ADSCrossRefGoogle Scholar
  11. 9.
    S. Salomonson, P. Oster: Phys. Rev. A40, 5548 (1989)ADSCrossRefGoogle Scholar
  12. 10.
    E.A. Uehling: Phys. Rev. 48, 55 (1935)ADSMATHCrossRefGoogle Scholar
  13. 11.
    G. Soff, P. Mohr: Phys. Rev. A 38, 5066 (1988)ADSCrossRefGoogle Scholar
  14. 12.
    H. Persson, I. Lindgren, S. Salomonson, P. Sunnergren: Phys. Rev. A 48, 2772 (1993)ADSCrossRefGoogle Scholar
  15. 13.
    I.P. Grant, H. Quiney: J. Phys. B27, L299 (1994)Google Scholar
  16. 14.
    S.A. Blundell: Phys. Rev. A47, 1790 (1993)ADSCrossRefGoogle Scholar
  17. 15.
    A. Ynnerman, J. James, I. Lindgren, H. Persson, S. Salomonson: Phys. Rev. A 50, 4671 (1994)ADSGoogle Scholar
  18. 16.
    H. Araki: Prog. Theor. Phys. 17, 619 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  19. J. Sucher: Phys. Rev. 109, 1010 (1958) and Ph. D. Thesis, Columbia University (1957), unpublishedGoogle Scholar
  20. 17.
    I. Lindgren, H. Persson, S. Salomonson, L. Labzowsky: Phys. Rev. A 51, 1167, (1995)ADSGoogle Scholar
  21. 18.
    S. Blundell, P.J. Mohr, W.R. Johnson, J. Sapirstein: Phys. Rev. A 48, 2615 (1993)ADSCrossRefGoogle Scholar
  22. 19.
    K.T. Cheng, W.R. Johnson, J. Sapirstein: Phys. Rev. Lett. 66, 2960 (1991)ADSCrossRefGoogle Scholar
  23. 20.
    H. Persson, S. Salomonson, P. Sunnergren, I. Lindgren: to be publishedGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Ingvar Lindgren
    • 1
  • Hans Persson
    • 1
  • Sten Salomonson
    • 1
  • Per Sunnergren
    • 1
  1. 1.Department of PhysicsChalmers University of Technology and Göteborg UniversityGöteborgSweden

Personalised recommendations