Convergence Properties of the Adiabatic Expansion for Few-Nucleon Systems

  • M. Viviani
  • A. Kievsky
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 8)


The convergence of the Adiabatic Hyperspherical Harmonic (AHH) functions as expansion basis for the few-nucleon wave function is studied. The case considered is the calculation of the ground state of nuclei with A = 3, 4, interacting via realistic potentials. The AHH basis is found to be very effective providing very fast convergence and it seems to be a promising tool for treating nuclei with A > 4.


Wave Function Realistic Potential Expansion Basis Adiabatic Expansion Hyperspherical Harmonic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kievsky, S. Rosati, M. Viviani: Nucl. Phys. A577, 511 (1994); M. Viviani, A. Kievsky, S. Rosati: Few Body Syst. 18, 25 (1995)CrossRefADSGoogle Scholar
  2. 2.
    J.M. Macek: J. Phys. B1, 831 (1968); M. Fabre de la Ripelle: C. R. Acad. Sci. Paris 274, 104 (1972)Google Scholar
  3. 3.
    J.L. Ballot, M. Fabre de la Ripelle, J.S. Levinger: Phys. Rev. C26, 2301 (1982)ADSGoogle Scholar
  4. 4.
    L.M. Delves: Nucl. Phys. 9, 391 (1959); F.T. Smith: Phys. Rev. 120, 1058 (1960); W. Zickendrath: Ann. of Phys. (NY) 53, 18 (1965); Yu.A. Simonov: Sov. J. Nucl. Phys. 3, 461 (1966)ADSGoogle Scholar
  5. 5.
    M. Fabre de la Ripelle: Ann. Phys. 147, 281 (1983)MATHCrossRefADSGoogle Scholar
  6. 6.
    M. Fabre de la Ripelle: Few Body Systems 14, 1 (1993)CrossRefADSGoogle Scholar
  7. 7.
    R.B. Wiringa, R.A. Smith, T.L. Ainsworth: Phys. Rev. C29, 1207 (1984)ADSGoogle Scholar
  8. 8.
    L.R. Afnan, Y.C. Tang: Phys.Rev. 175, 1337 (1968)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • M. Viviani
    • 1
  • A. Kievsky
    • 1
  1. 1.Sezione di PisaINFNPisaItaly

Personalised recommendations