\(^2{\rm{\vec H(}}\vec d,p{{\rm{)}}^3}{\rm{H}}\) Reaction Calculations at 20–120 keV by the Four-Body Yakubovsky Equations with the Paris Potential

  • Eizo Uzu
  • Shinsho Oryu
  • Makoto Tanifuji
Part of the Few-Body Systems book series (FEWBODY, volume 8)


We analyze \( {}^{2}\text{H(}\vec{d},p{{\text{)}}^{3}}\text{H}\) reaction measurements by using the four-body Yakubovsky integral equations and simple Coulomb correct ion methods. The adopted potential is the Paris-potential (PEST-1) for the 1 S 0 and 3 S 13 D 1 states. The [3+1] and the [2+2] sub-amplitudes are given by the energy dependent pole expansion of rank-3, and also the Hilbert-Schmidt one. We included 1/2+ and 1/2 states for 3He and 3H nuclei which may occur in the intermediate subnuclei as part of the four-nucleon system. The angular momentum between two deuterons in the initial state is retained up to 2, and also the maximum value between 3H and p in the final state is 4. Therefore, the total spins and parities of the four-nucleon system are 0+, 0, 1+, 1, 2+, 2, 3+, 3, and 4+. The calculated total cross section, differential cross section, and tensor analyzing powers at energies from 20 to 120 keV are in very good agreement with the experimental data, but the vector analyzing power is still very small. Ratios of the double polarized deuteron scattering cross sections to the unpolarized one (σ pol /σ 0) were calculated. It was found that the cross section is suppressed by a factor one half at higher energies.


Differential Cross Section Fusion Cross Section Adopted Potential Nucleon System Tensor Analyze Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.M. Kulsrud, H.P. Furth, E.J. Valeo, M. Goldhaber: Phys. Rev. Lett. 49, 1248 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    H.M. Hofmann, and D. Fick: Phys. Rev. Lett. 52, 2038 (1984);ADSCrossRefGoogle Scholar
  3. D. Fick, and H.M. Hofmann: Phys. Rev. Lett. 55, 1650 (1985)ADSCrossRefGoogle Scholar
  4. 3.
    K.F. Liu, J.S. Zhang, and G.W. Shuy: Phys. Rev. Lett. 55, 1649 (1985);ADSCrossRefGoogle Scholar
  5. J.S. Zhang, K.F. Liu, and G.W. Shuy: Phys. Rev. Lett. 57, 1410 (1986)ADSCrossRefGoogle Scholar
  6. 4.
    Y. Tagishi, N. Nakamoto, K. Katoh, J. Togawa, T. Hisamune, T. Yoshida, Y. Aoki: Phys. Rev. C46, R1155 (1992)ADSGoogle Scholar
  7. 5.
    B. Becker, R. Randermann, B. Polke, S. Lemaître, R. Reckenfelderbäumer, P. Niessen, G. Rauprich, L. Sydow, H. Paetz gen. Schieck: Few-Body Sys. 13 (1992), 19;ADSCrossRefGoogle Scholar
  8. B. Becker, R. Randermann, B. Polke, S. Lemaître, R. Reckenfelderbäumer, P. Niessen, G. Rauprich, L. Sydow, H. Paetz gen. Schieck: ibid.: Phys. Lett. B276 (1992), 290Google Scholar
  9. 6.
    Makoto Tanifuji: Phys. Lett. B289, 233 (1992)ADSGoogle Scholar
  10. 7.
    O.A. Yakubovsky: Sov. J. Nucl. Phys. 5, 937 (1967)Google Scholar
  11. 8.
    J. Haidenbauer and W. Plessas: Phys. Rev. C30, 1822 (1984);ADSGoogle Scholar
  12. J. Haidenbauer and W. Plessas: ibid.: C32 1424 (1985)ADSGoogle Scholar
  13. 9.
    Eizo Uzu, Shinsho Oryu, and Makoto Tanifuji: Prog. Theor. Phys. 90, 937 (1993)ADSCrossRefGoogle Scholar
  14. 10.
    S. Oryu: Prog. Theor. Phys. Suppl. 61, 180 (1977);ADSCrossRefGoogle Scholar
  15. S. Oryu: Phys. Rev. C27, 2500 (1983)ADSGoogle Scholar
  16. 11.
    Ronald E. Brown, Nelson Jarmie: Phys. Rev. C41, 1391 (1990)ADSGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Eizo Uzu
    • 1
  • Shinsho Oryu
    • 1
  • Makoto Tanifuji
    • 2
  1. 1.Department of Physics, Faculty of Science and TechnologyScience University of TokyoNoda, Chiba 278Japan
  2. 2.Department of Physics and Research Center of Ion Beam TechnologyHosei UniversityChiyoda-ku, Tokyo 102Japan

Personalised recommendations