Advertisement

Precise Nonvariational Calculation of Resonant States of Helium with the Correlation Function Hyperspherical Harmonic Method

  • S. Berkovic
  • R. Krivec
  • V. B. Mandelzweig
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 8)

Abstract

Direct solution of the Schrödinger equation for resonant S states of the Helium atom is obtained with the help of the complex rotation method (which reduces the resonant problem to that of bound states) and the correlation function hyperspherical harmonic method (CFHHM). In the CFHH method the bound state solution is a product of a correlation function and of a smooth factor expanded into hyperspherical harmonic functions. Given a proper correlation function, chosen from physical considerations, the method generates resonant wave functions, accurate in the whole range of interparticle distances. Calculated energies are compared to those obtained by variational and other precise computations.

Keywords

Wave Function Helium Atom Interparticle Distance Ordinary Differential Equation Hyperspherical Harmonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.K. Ho: Phys. Rep. 99, 1 (1983)CrossRefADSGoogle Scholar
  2. 2.
    M.I. Haftel, V.B. Mandelzweig: Ann. Phys. 189, 29 (1989)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    R. Krivec, M.I. Haftel, V.B. Mandelzweig: Phys. Rev. A44, 7158 (1991)CrossRefADSGoogle Scholar
  4. 4.
    P. Froelich, S.A. Alexander: Phys. Rev. A42, 2550 (1990)CrossRefADSGoogle Scholar
  5. 5.
    N. Moiseyev, P.R. Certain, F. Weinhold: Mol. Physics 36, 1613 (1978)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    R. Yaris, P. Winkler: J. Phys. B11, 1475 (1978)ADSGoogle Scholar
  7. 7.
    D. H. Oza: Phys. Rev. A33, 824 (1986)CrossRefADSGoogle Scholar
  8. 8.
    A. K. Bhatia, A. Temkin: Phys. Rev. A11, 2018 (1975)CrossRefADSGoogle Scholar
  9. 9.
    A. Macias, A. Riera: Phys. Lett. A119, 28 (1986)CrossRefGoogle Scholar
  10. 10.
    Y.K. Ho: Phys. Rev. A23, 2137 (1981);MathSciNetCrossRefADSGoogle Scholar
  11. 1.
    Y.K. Ho: J. Phys. B12, 387 (1979)ADSGoogle Scholar
  12. 11.
    K.T. Chung, B.F. Davie: Phys. Rev. A26, 3278 (1982)CrossRefADSGoogle Scholar
  13. 12.
    J. Tang, S. Watanabe, M. Matsuzawa: Phys. Rev. A46, 2437 (1992)CrossRefADSGoogle Scholar
  14. 13.
    P. J. Hicks, J. Comer: J. Phys. B8, 1866 (1975)ADSGoogle Scholar
  15. 14.
    F. Gelbart, R.J. Tweed, J. Peresse: J. Phys. B9, 1739 (1976)ADSGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • S. Berkovic
    • 1
  • R. Krivec
    • 1
    • 2
  • V. B. Mandelzweig
    • 1
  1. 1.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael
  2. 2.J. Stefan InstituteLjubljanaSlovenia

Personalised recommendations