Skip to main content

Biorthogonal Wavelet Filters for Frequency Domain Volume Rendering

  • Conference paper
Visualization in Scientific Computing ’95

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

Rendering images from three-dimensional discrete data sets usually involves interpolation between samples. In terms of signal processing theory, common interpolation methods like trilinear and cubic interpolation are equivalent to the convolution of the sampled data with a suitably chosen reconstruction filter. Frequency domain volume rendering is a technique based on the Fourier projection-slice theorem for the efficient generation of line integral projections without absorption. The quality of the images relies almost completely on the quality of the interpolation filter for the extraction of a 2D slice from the 3D frequency domain representation of the volume. This paper presents experiences we obtained when implementing frequency domain volume rendering and investigates the use of scaling functions of biorthogonal wavelets as reconstruction filters that exhibit the required compact support in space and fast decay in the frequency domain. This method generates X-ray-like images with good quality and short rendering times. In order to accelerate the rendering process without much loss of image quality we introduce wavelets as a subband filtering scheme generating a hierarchical representation of the volume data with the potential for interactive data exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beylkin, G. and Coifman, R. and Rokhlin, V. Wavelets in Numerical Analysis. In: M. B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, I. Meyer, L. Raphael (eds.), Wavelets and Their Application, pp. 181–210. Jones and Bartlett Publishers, Boston and London (1992).

    Google Scholar 

  2. Bracewell, Ronald E. The Hartley Transform. Oxford University Press (1986).

    Google Scholar 

  3. Brigham, E. Oran. The Fast Fourier Transform. Prentice-Hall Inc. (1974).

    Google Scholar 

  4. Chui, Charles K. Wavelet Analysis and its Applications I: An Introduction to Wavelets. Academic Press, Inc. (1992).

    Google Scholar 

  5. Civanlar, M.R. and Nobakht, R. A. Optimal Pulse Shape Design using Projections onto Convex Sets. In: ICASSP 88 Proceedings, vol. 3, pp. 1874–4877. IEEE ComputerSociety Press (1988).

    Google Scholar 

  6. Daubechies, Ingrid. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992).

    Google Scholar 

  7. Dunne, Shane and Napel, Sandy and Rutt, Brian. Fast Projection of Volume Data. In: Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 11–18. IEEE Computer Society, IEEE Computer Society Press (1990).

    Google Scholar 

  8. Levoy, M. Display of Surfaces from Volume Data. Computer Graphics and Applications, 8 (3), 29–37 (1988).

    Article  Google Scholar 

  9. Mallat, S. G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (7), 674–693 (1989).

    Article  Google Scholar 

  10. Malzbender, T. Fourier-Volume-Rendering. ACM Transactions on Graphics, 12 (3), 233–250 (1993).

    Article  MATH  Google Scholar 

  11. Marschner, S. R. and Lobb, R. J. An Evaluation of Reconstruction filters for Volume Rendering. In: R. D. Bergeron, A. E. Kaufman (eds.), Visualization ‘84, pp. 100–107. IEEE Computer Society, IEEE Computer Society Press (1994).

    Google Scholar 

  12. Muraki, S. Volume Data and Wavelet Transforms. IEEE Computer Graphics and Applications, 13 (4), 50–56 (1993).

    Article  Google Scholar 

  13. Tao, H., Moorhead, R. T. Progressive Transmision of Scientific Data Using Biorthogonal Wavelet Transform. In: A. Kaufman, W. Krüger (eds.), 1994 Symposium on Volume Visualization, pp. 93–99. ACM SIGGRAPH (1994).

    Google Scholar 

  14. Totsuka, T., Levoy, M. Frequency Domain Volume Rendering. Computer Graphics, 27 (4), 271–78 (1993).

    Google Scholar 

  15. Westermann, R. A Multiresolution Framework for Volume Rendering. In: A. Kaufman, W. Krüger (eds.), 1994 Symposium on Volume Visualization, pp. 51–58. ACM SIGGRAPH (1994).

    Google Scholar 

  16. Westover, L. Footprint Evaluation for Volume Rendering. Computer Graphics, 24 (4), 367–376 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

Grosso, R., Ertl, T. (1995). Biorthogonal Wavelet Filters for Frequency Domain Volume Rendering. In: Scateni, R., van Wijk, J.J., Zanarini, P. (eds) Visualization in Scientific Computing ’95. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9425-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9425-6_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82729-1

  • Online ISBN: 978-3-7091-9425-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics