On the Optimization of Projective Volume Rendering

  • P. Cignoni
  • C. Montani
  • D. Sarti
  • R. Scopigno
Part of the Eurographics book series (EUROGRAPH)


How to render very complex datasets, and yet maintain interactive response times, is a hot topic in volume rendering. In this paper we focus on projective visualization of datasets represented via tetrahedral tessellations. Direct projective visualization is performed by sorting tetrahedra with respect to view direction and then by projecting them onto the screen. Different sorting algorithms and “per tetrahedra” projection techniques are reviewed and evaluated. A new method for tetrahedra projection approximation is presented. In addition, we compare the results obtained by the optimization of the rendering process with those obtained by adopting a data simplification approach.


Delaunay Triangulation Adjacency Graph Volume Dataset Volume Visualization Topological Sort 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cignoni, P., Floriani, L. D., Montani, C., Puppo, E., Scopigno, R. Multiresolution Modeling and Rendering of Volume Data based on Simplicial Complexes. In: Proceedings of 1994 Symposium on Volume Visualization, pp. 19–26. ACM Press (1994).Google Scholar
  2. [2]
    Gelder, A. V., Wilhelms, J. Rapid exploration of curvilinear grids using direct volume rendering. In: IEEE Visualization ‘83 Proceedings (Oct 25–29, San Jose CA), pp. 70–77 (1993).Google Scholar
  3. [3]
    Kaufman, A. Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA (1990).Google Scholar
  4. [4]
    Max, N., Hanrahan, P., Crawfis, R. Area and volume coherence for efficient visualization of 3D scalar functions. A.C.M.Computer Graphics (Proc. of 1990 WS on Volume Visualization), 24 (5), 27–33 (1990).Google Scholar
  5. [5]
    Preparata, F., Shamos, M. Computational Geometry - An Introduction. Springer-Verlag (1985).Google Scholar
  6. [6]
    Shirley, P., Tuchman, A. A polygonal approximation to direct scalar volume rendering. ACM Computer Graphics (Proc. of 1990 WS on Volume Visualization), 24 (5), 63–70 (1990).CrossRefGoogle Scholar
  7. [7]
    Stein, C., Becker, B., Max, N. Sorting and Hardware Assisted Rendering for Volume Visualization. In: Proceedings of 1994 Symposium on Volume Visualization, pp. 83–90. ACM Press (1994).Google Scholar
  8. [8]
    Williams, P. Interactive splatting of nonrectilinear volumes. In: A. Kaufman, G. Nielson (eds.), Visualization ‘82 Proceedings, pp. 37–45. IEEE Computer Society Press (1992).Google Scholar
  9. [9]
    Williams, P. Visibility ordering meshed polyhedra. ACM T.O.G., 11 (2), 103–126 (1992).CrossRefMATHGoogle Scholar
  10. [10]
    Williams, P. Interactive Direct Volume Rendering of Curvilinear and Unstructured Data. Ph.D. thesis, University of Illinois at Urbana—Champaign (1993).Google Scholar
  11. [11]
    Williams, P., Max, N. A volume density optical model. In: A. Kaufman, W. Lorensen (eds.), 1992 Workshop on Volume Visualization, pp. 61–68. ACM Press (1992).Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • P. Cignoni
    • 1
  • C. Montani
    • 2
  • D. Sarti
    • 2
  • R. Scopigno
    • 3
  1. 1.Dip. Scienze dell’InformazioneUniv. PisaPisaItaly
  2. 2.I.E.I. - C.N.R.PisaItaly
  3. 3.CNUCE - C.N.R.PisaItaly

Personalised recommendations