Advertisement

On a Unified Visualization Approach for Data from Advanced Numerical Methods

  • Martin Rumpf
  • Alfred Schmidt
  • Kunibert G. Siebert
Part of the Eurographics book series (EUROGRAPH)

Abstract

Recent numerical methods to solve partial differential equations in scientific computing are based on a variety of advanced kinds of domain discretizations and appropriate finite dimensional function spaces for the solutions. The scope of grids under consideration includes structured and unstructured, adaptive and hierarchical, conforming and nonconforming meshes. The function spaces might be of Lagrangian or Hermitian type with higher polynomial degree and possibly discontinuous over element boundaries. Unfortunately, the rendering tools in scientific visualization are mostly restricted to special data structures which differ substantially from the data formats used in the numerical application. This forces users to map and interpolate their data, which is time consuming, storage extensive, and accompanied with interpolation errors.

We present an interface between numerical methods on various types of grids and general visualization routines which overcomes most of these disadvantages. It is based on a procedural approach managing a collection of arbitrary elements and a set of functions describing each element type.

Keywords

Extreme Graph Prescribe Data Format Scientific Visualization High Polynomial Degree IEEE Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Advanced Visual Systems, Inc.: AVS user’s guide, Waltham, 1992Google Scholar
  2. [2]
    Demkowicz, L., Oden, J. T., Rachowicz, W., Hardy, O.: Toward a universal h-p adaptive finite element strategy, Part 1 — Part 3. Comp. Meth. Appl. Mech. Engrg. 77, 79–212, 1989CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    Bänsch, E.: Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg. 3, 181–191, 1991MATHGoogle Scholar
  4. [4]
    Bryson, S.; Levit, C.: The Virtual Wind Tunnel, IEEE CG&A, 7, 25–34, 1992Google Scholar
  5. [5]
    Delmarcelle, T.; Hesselink, L.: The Topology of Symmetric, Second-Order Tensor Fields, Proc. IEEE Visualization ‘84, 140–147Google Scholar
  6. [6]
    Dyer, D. S.: A dataflow toolkit for visualization n, IEEE CG&A 10, No. 4, 60–69, 1990Google Scholar
  7. [7]
    Haber, R. B.; Lucas, B.; Collins, N.: A data model for scientific visualization with provisions for regular and irregular grids, Proc. IEEE Visualization ‘81Google Scholar
  8. [8]
    Hackbusch, W. (ed.): Robust Mutli-Grid Methods, Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, 1988Google Scholar
  9. [9]
    Heiman, J. I.; Hesselink, L.: Visualizing Vector Field Topology in Fluid Flows, IEEE CG&A, 5, 36–46, 1991Google Scholar
  10. [10]
    IBM, Inc.: IBM AIX Visualization Data Explorer, user’s guide, IBM Publication SC38–0081Google Scholar
  11. [11]
    Itoh, T.; Koyomada, K.: Isosurface Generation by Using Extreme Graphs, Proc. IEEE Visualization ‘84, 77–83Google Scholar
  12. [12]
    Kardestuncer, K.: Finite element handbook, McGraw-Hill, New York, 1987MATHGoogle Scholar
  13. [13]
    Lane, D. A.: UFAT — A particle Tracer for Time-dependent Flow Fields, Proc. IEEE Visualization ‘84, 257–264, 1994Google Scholar
  14. [14]
    Lang, U.; Lang, R.; Rühle, R.: Integration of visualization and scientific calculation in a software system, Proc. IEEE Visualization ‘81Google Scholar
  15. [15]
    Lucas, B.; et. al.: An architecture for a scientific visualization system, Proc. IEEE Visualization ‘82Google Scholar
  16. [16]
    NCSA HDF specification manual, available via anonymous ftp from ftp.ncsa.uiuc.eduGoogle Scholar
  17. [17]
    Ning, P.; Bloomenthal, J.: An evaluation of Implicit Surface Tilers, IEEE CG&A, 11, 33–41, 1993Google Scholar
  18. [18]
    Nochetto, R. H.; Paolini, M.; Verdi, C.: A dynamic mesh algorithm for curvature dependent evolving interfaces, J. Comput. Phys. (to appear)Google Scholar
  19. [19]
    Pironneau, O.: Méthode des Éléments Finis pour les Fluides, Masson, Paris, 1988Google Scholar
  20. [20]
    Polthier, K.; Rumpf, M.: A Concept for Timedependent Processes, Proc. Eurographics Workshop 94, Rostock, 1994Google Scholar
  21. [21]
    Rumpf, M.; Geiben, M.: Moving and tracing in timedependent vector fields on adaptive meshes, Report, SFB 256, Bonn, 1994Google Scholar
  22. [22]
    Rumpf, M.; Schmidt, A.; Siebert, K. G.: Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines, Report, SFB 256, Bonn, submitted to Computer Graphics ForumGoogle Scholar
  23. [23]
    Siebert, K. G.: Local refinement of 3d-meshes consisting of prisms and conforming closure, IMPACT Comput. Sci. Engrg. 5, 271–284, 1993MATHMathSciNetGoogle Scholar
  24. [24]
    Siebert, K. G.: An a posteriori error estimator for anisotropic refinement, Preprint 313, SFB 256, Bonn, 1993 (to appear in Num. Math.)Google Scholar
  25. [25]
    Silicon Graphics Computer Systems, Inc.: IRIS Explorer, Tech. Report BP-TR-1E-01, 1991Google Scholar
  26. [26]
    Treinish, L. A.: Data structures and access software for scientific visualization, Computer Graphics 25, 104–118, 1991Google Scholar
  27. [27]
    Upson, C.; et. al.: The Application Visualization System: A computational environment for scientific visualization, IEEE CG&A 9, No. 4, 30–42, 1989Google Scholar
  28. [28]
    Wierse, A.; Rumpf, M.: GRAPE, Eine objektorientierte Visualisierungs- und Numerikplattform. Informatik Forschung und Entwicklung 7, 145–151, 1992Google Scholar
  29. [29]
    Wierse, M.: Higher order upwind schemes on unstructured grids for the compressible euler equation in timedependent geometries in 3d. Dissertation, Freiburg, 1994Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Martin Rumpf
    • 1
  • Alfred Schmidt
    • 1
  • Kunibert G. Siebert
    • 1
  1. 1.Institut für Angewandte MathematikUniversität FreiburgFreiburg i. Br.Germany

Personalised recommendations