Skip to main content

On a Unified Visualization Approach for Data from Advanced Numerical Methods

  • Conference paper
Book cover Visualization in Scientific Computing ’95

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

Recent numerical methods to solve partial differential equations in scientific computing are based on a variety of advanced kinds of domain discretizations and appropriate finite dimensional function spaces for the solutions. The scope of grids under consideration includes structured and unstructured, adaptive and hierarchical, conforming and nonconforming meshes. The function spaces might be of Lagrangian or Hermitian type with higher polynomial degree and possibly discontinuous over element boundaries. Unfortunately, the rendering tools in scientific visualization are mostly restricted to special data structures which differ substantially from the data formats used in the numerical application. This forces users to map and interpolate their data, which is time consuming, storage extensive, and accompanied with interpolation errors.

We present an interface between numerical methods on various types of grids and general visualization routines which overcomes most of these disadvantages. It is based on a procedural approach managing a collection of arbitrary elements and a set of functions describing each element type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Advanced Visual Systems, Inc.: AVS user’s guide, Waltham, 1992

    Google Scholar 

  2. Demkowicz, L., Oden, J. T., Rachowicz, W., Hardy, O.: Toward a universal h-p adaptive finite element strategy, Part 1 — Part 3. Comp. Meth. Appl. Mech. Engrg. 77, 79–212, 1989

    Article  MATH  MathSciNet  Google Scholar 

  3. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg. 3, 181–191, 1991

    MATH  Google Scholar 

  4. Bryson, S.; Levit, C.: The Virtual Wind Tunnel, IEEE CG&A, 7, 25–34, 1992

    Google Scholar 

  5. Delmarcelle, T.; Hesselink, L.: The Topology of Symmetric, Second-Order Tensor Fields, Proc. IEEE Visualization ‘84, 140–147

    Google Scholar 

  6. Dyer, D. S.: A dataflow toolkit for visualization n, IEEE CG&A 10, No. 4, 60–69, 1990

    Google Scholar 

  7. Haber, R. B.; Lucas, B.; Collins, N.: A data model for scientific visualization with provisions for regular and irregular grids, Proc. IEEE Visualization ‘81

    Google Scholar 

  8. Hackbusch, W. (ed.): Robust Mutli-Grid Methods, Notes on Numerical Fluid Mechanics, Vieweg, Braunschweig, 1988

    Google Scholar 

  9. Heiman, J. I.; Hesselink, L.: Visualizing Vector Field Topology in Fluid Flows, IEEE CG&A, 5, 36–46, 1991

    Google Scholar 

  10. IBM, Inc.: IBM AIX Visualization Data Explorer, user’s guide, IBM Publication SC38–0081

    Google Scholar 

  11. Itoh, T.; Koyomada, K.: Isosurface Generation by Using Extreme Graphs, Proc. IEEE Visualization ‘84, 77–83

    Google Scholar 

  12. Kardestuncer, K.: Finite element handbook, McGraw-Hill, New York, 1987

    MATH  Google Scholar 

  13. Lane, D. A.: UFAT — A particle Tracer for Time-dependent Flow Fields, Proc. IEEE Visualization ‘84, 257–264, 1994

    Google Scholar 

  14. Lang, U.; Lang, R.; Rühle, R.: Integration of visualization and scientific calculation in a software system, Proc. IEEE Visualization ‘81

    Google Scholar 

  15. Lucas, B.; et. al.: An architecture for a scientific visualization system, Proc. IEEE Visualization ‘82

    Google Scholar 

  16. NCSA HDF specification manual, available via anonymous ftp from ftp.ncsa.uiuc.edu

    Google Scholar 

  17. Ning, P.; Bloomenthal, J.: An evaluation of Implicit Surface Tilers, IEEE CG&A, 11, 33–41, 1993

    Google Scholar 

  18. Nochetto, R. H.; Paolini, M.; Verdi, C.: A dynamic mesh algorithm for curvature dependent evolving interfaces, J. Comput. Phys. (to appear)

    Google Scholar 

  19. Pironneau, O.: Méthode des Éléments Finis pour les Fluides, Masson, Paris, 1988

    Google Scholar 

  20. Polthier, K.; Rumpf, M.: A Concept for Timedependent Processes, Proc. Eurographics Workshop 94, Rostock, 1994

    Google Scholar 

  21. Rumpf, M.; Geiben, M.: Moving and tracing in timedependent vector fields on adaptive meshes, Report, SFB 256, Bonn, 1994

    Google Scholar 

  22. Rumpf, M.; Schmidt, A.; Siebert, K. G.: Functions defining arbitrary meshes, a flexible interface between numerical data and visualization routines, Report, SFB 256, Bonn, submitted to Computer Graphics Forum

    Google Scholar 

  23. Siebert, K. G.: Local refinement of 3d-meshes consisting of prisms and conforming closure, IMPACT Comput. Sci. Engrg. 5, 271–284, 1993

    MATH  MathSciNet  Google Scholar 

  24. Siebert, K. G.: An a posteriori error estimator for anisotropic refinement, Preprint 313, SFB 256, Bonn, 1993 (to appear in Num. Math.)

    Google Scholar 

  25. Silicon Graphics Computer Systems, Inc.: IRIS Explorer, Tech. Report BP-TR-1E-01, 1991

    Google Scholar 

  26. Treinish, L. A.: Data structures and access software for scientific visualization, Computer Graphics 25, 104–118, 1991

    Google Scholar 

  27. Upson, C.; et. al.: The Application Visualization System: A computational environment for scientific visualization, IEEE CG&A 9, No. 4, 30–42, 1989

    Google Scholar 

  28. Wierse, A.; Rumpf, M.: GRAPE, Eine objektorientierte Visualisierungs- und Numerikplattform. Informatik Forschung und Entwicklung 7, 145–151, 1992

    Google Scholar 

  29. Wierse, M.: Higher order upwind schemes on unstructured grids for the compressible euler equation in timedependent geometries in 3d. Dissertation, Freiburg, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

Rumpf, M., Schmidt, A., Siebert, K.G. (1995). On a Unified Visualization Approach for Data from Advanced Numerical Methods. In: Scateni, R., van Wijk, J.J., Zanarini, P. (eds) Visualization in Scientific Computing ’95. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9425-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9425-6_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82729-1

  • Online ISBN: 978-3-7091-9425-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics