Advertisement

Beyond volume rendering: visualization, haptic exploration, and physical modeling of voxel-based objects

  • Sarah F. Frisken Gibson
Part of the Eurographics book series (EUROGRAPH)

Abstract

This paper proposes the use of a voxel-based data representation not only for visualization, but also for physical modeling of objects and structures derived from volumetric data. Work in progress that demonstrates the utility of a voxel-based data format for modeling physical interactions between virtual objects is discussed, data structures that help to optimize storage requirements and preserve object integrity during object movement are presented, and prototype systems are described. These prototypes include 2D and 3D systems that illustrate voxel-based collision detection and avoidance, a force-feedback system that enables haptic, (or tactile), exploration of virtual objects, and a 2D system that illustrates interactive modeling of deformable voxel-based objects.

Keywords

Virtual Environment Collision Detection Virtual Object Allowable Region Deformable Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arridge, “Manipulation of Volume data for Surgical Simulation”, in “3D Imaging in Medicine”, eds. K. Hohne et al, Springer-Verlag, 1990.Google Scholar
  2. 2.
    Avila, R., Sobierajski, L., Kaufman, A., “Towards a Comprehensive Volume Visualization System”, Proceedings, IEEE Visualization 92, pp. 13–20, 1992.Google Scholar
  3. 3.
    Baraff, D., “Rigid Body Simulation” in “An Introduction to Physically-Based Modeling”, Course Notes 32, organizer: A. Witkin, Siggraph, 1994.Google Scholar
  4. 4.
    B. Cabral, N. Cam, J. Foran, “Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware”, Proc. IEF.E 1994 Workshop on Volume Visualization, Washington, DC, pp. 91–97, 1994.Google Scholar
  5. 5.
    L. Chen and M. Sontag, “Representation, Display, and Manipulation of 3D digital scenes and their Medical Applications”, Computer Vision, Graphics, and Image Processing, 48, 1989, pp. 190–216.CrossRefGoogle Scholar
  6. 6.
    A. DiGioia, T. Kanade, R. Taylor, eds.“Proceedings of the First International Symposium on Medical Robotics and Computer Assisted Surgery”, Shadyside Hospital, Pittsburgh, PA, 1994.Google Scholar
  7. 7.
    J. Gerber et al., “Simulating Femoral Repositioning with Three-dimensional CT”, J. Computer Assisted Tomography, 15, 1991, pp. 121–125.CrossRefGoogle Scholar
  8. 8.
    Hohne, K.H. et al, “3D-Visualization of Tomographic Volume Data Using the Generalized Voxel Model”, The Visual Computer, 6, February, 1990, pp. 28–37.Google Scholar
  9. 9.
    Hsu, W., “Segmented Ray Casting for data Parallel Volume Rendering”, Proc. 1993 Parallel Rendering Symposium, ACM Press, 1993.Google Scholar
  10. 10.
    Kaufman, A., Cohen, D., Yagel, R., “Volume Graphics”, Computer, 27, July 1993, pp. 51–64.CrossRefGoogle Scholar
  11. 11.
    Kaufman, A., “Efficient Algorithms for 3D Scan-Conversion of parametric Curves, Surfaces, and Volumes”, Computer Graphics, 21, July 1987, pp. 171–179.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kaufman, A. and Bakalash, R., “Memory and Processing Architecture for 3D Voxel-Based Imagery”, IEEE Computer Graphics and Applications, pp. 10–23, 1988.Google Scholar
  13. 13.
    Kaufman, A.,ed., “Volume Visualization”, IEEE CS Press, Los Alamitos, CA, 1990.Google Scholar
  14. 14.
    Kaufman, A., Yagel, R., Cohen, D., “Intermixing Surface and Volume Rendering”, in 3D Imaging in Medicine: Algorithms, Systems, Applications, K.H. Hoehne, H. Fuchs, and S.M. Pizer, eds., Springer-Verlag, Berlin, 1990, pp. 217–227.Google Scholar
  15. 15.
    Ma, K-L, Painter, J., Hunsen, C., Krogh, M., “A Data-distributed Parallel Algorithm for Ray-traced Volume Rendering”, Proc. 1993 Parallel Rendering Symposium, ACM Press, 1993.Google Scholar
  16. 16.
    T. Massie, K. Salisbury, “The PHANToM Haptic Interface: A Device for Probing Virtual Objects”, Proc. ASME Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems“, Chicago, Nov. 1994.Google Scholar
  17. 17.
    Neumann, U., “Volume Reconstruction and Parallel Rendering Algorithms: A Comparative Analysis”, Ph.D. dissertation, Dept. Computer Science, U.N.C. Chapel Hill, 1993.Google Scholar
  18. 18.
    Neumann, U., “Parallel Volume Rendering Algorithm Performance on Mesh-Connected Multicomputers”, Proc. 1993 Parallel Rendering Symposium, ACM Press, 1993.Google Scholar
  19. 19.
    Pfsiter, H., Kaufman, A., and Chiueh, T., “Cube-3: AReal-Time Architecture for High-Resolution Volume Visualization”, Proc. 1994 Workshop on Volume Visulization, Washington, DC, pp. 75–83, 1994.Google Scholar
  20. 20.
    Pieper, S., Rosen, J., Zeltzer, D., “Interactive Graphics for Plastic Surgery: A Task-level Analysis and Implementation”, ACM Proc. Interactive 3D Graphics, 3, pp. 127–134, 1992.Google Scholar
  21. 21.
    R. Robb, ed., “Visualization in Biomedical Computing 1994”, SPIE 2359, 1994.Google Scholar
  22. 22.
    Terzopoulos, D., Waters, K., “Physically-based Facial Modelling, Analysis, and Animation”, J. Visualization and Comp. Animation, 1, pp. 73–80, 1990.Google Scholar
  23. 23.
    Westover, L., “Footprint Evaluation for Volume Rendering”, Computer Graphics, 24, August, 1990, pp. 367–376.Google Scholar
  24. 24.
    Yagel, R., “Realistic Display of Volumes”, Image Capture, Formatting and Display, SPIE Vol. 1653, pp. 470–476.Google Scholar
  25. 25.
    Yasuda et al, “Computer System for Craniofacial Surgical Planning based on CT Images”, TREE Trans. on Med. Imaging, 9, 1990, pp. 270–280.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • Sarah F. Frisken Gibson
    • 1
  1. 1.Mitsubishi Electric Research LaboratoriesCambridge Research CenterCambridgeUSA

Personalised recommendations