The Spirostaphylotrichins and Related Microbial Metabolites

  • P. Walser-Volken
  • Ch. Tamm
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 67)

Abstract

Fungi are organisms widely distributed in nature and particularly abundant in soils, damp environments and in bad rests of foodstuffs. They encompass the most various forms of life (unicellular, multicellular, spherical, filamentous, parasitic, saprobic, symbiotic, etc.) and are often considered to be harmful, pathogenic or even toxic. Nevertheless fungi possess, besides their ecological importance as destruents (in connection with the decomposition of organic materials), also a great utility as producers of pharmacologically and commercially valuable natural substances. Indeed intensive research over the past five decades has shown that soil derived fungi, and above all those assigned to the class of Deuteromycetes (Fungi imperfecti), represent a rich source of bioactive secondary metabolites.

Keywords

Mutant Strain Minimal Medium Enrichment Factor Culture Broth Absolute Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicot, J., and J. Meyer: Un Hyphomycète nouveau des sols tropicaux. Bulletin trimestriel de la Société mycologique de France, 72, 318 (1956).Google Scholar
  2. 2.
    Peter, H., and J. Auden: Deutsche Offenlegungsschrift, DE 35 22 578 Al (2.1.1986). i.Google Scholar
  3. 3.
    Sandmeier, p., and Ch. Tamm: Studies on the Biosynthesis of Spirostaphylotrichin A. Helv. Chim. Acta, 72, 774 (1989).CrossRefGoogle Scholar
  4. 4.
    Sandmeier, P., and Ch. Tamm: New Spirostaphylotrichins from Staphylotrichum coccosporum. Helv. Chim. Acta, 72, 784 (1989).CrossRefGoogle Scholar
  5. 5.
    Sandmeier, P., and Ch. Tamm: New Spirostaphylotrichins from the Mutant Strain P 84 of Staphylotrichum coccosporum. Helv. Chim. Acta, 72, 1107 (1989).CrossRefGoogle Scholar
  6. 6.
    Sandmeier, P., and Ch. Tamm: New Spirostaphylotrichins from the Mutant Strain P 649 of Staphylotrichum coccosporum: The Biogenetic Interrelationship of the Known Spirostaphylotrichins. Helv. Chim. Acta, 73, 975 (1990).CrossRefGoogle Scholar
  7. 7.
    Sugawara, F., N. Takahashi, G.A. Strobel, S.A. Strobel, H.S.M. Lu, and J. Clardy: Triticones A and B, Novel Phytotoxins from the Plant Pathogenic Fungus Drechslera tritici-repentis. J. Am. Chem. Soc., 110, 4086 (1988).CrossRefGoogle Scholar
  8. 8.
    Hallock, Y.F., H.S.M. Lu, J. Clardy, G.A. Strobel, F. Sugawara, R. Samsoedin, and S. Yoshida: Triticones, Spirocyclic Lactams from the Fungal Plant Pathogen Drechslera tritici-repentis. J. Nat. Prod., 56, 747 (1993).CrossRefGoogle Scholar
  9. 9.
    Ayer, W.A., P.A. Craw, and J. Neary: Metabolites of the Fungus Arthropsis truncata. Can. J. Chem., 70, 1338 (1992).CrossRefGoogle Scholar
  10. 10.
    Ayer, W.A., and P.A. Craw: Biosynthesis and Biogenetic Interrelationships of the Metabolites of the Fungus Arthropsis truncata. Can. J. Chem., 70, 1348 (1992).CrossRefGoogle Scholar
  11. 11.
    Probst, A., and Ch. Tamm: Biosynthesis of the Cytochalasans. Biosynthetic Studies on Chaetoglobosin A and 19-O-Acetylchaetoglobosin A. Helv. Chim. Acta, 64, 2065 (1981).CrossRefGoogle Scholar
  12. 12.
    Möhr, P., and Ch. Tamm: Biosynthesis of Pseurotin A, Tetrahedron, 37, 201 (1981).CrossRefGoogle Scholar
  13. 13.
    Kahana, Z.E., and A. Lapidot: Biosynthesis of Aspartic Acid and Alanine by Immobilized Bacteria. Anal. Biochem., 126, 389 (1982).CrossRefGoogle Scholar
  14. 14.
    Mueller, B., A. Haedener, and Ch. Tamm: Studies on the Biosynthesis of Tabtoxin (Wildfire Toxin). Origin of the Carbonyl C-Atom of the ß-Lactam Moiety from the Ci-Pool. Helv. Chim. Acta, 70, 412 (1987).CrossRefGoogle Scholar
  15. 15.
    O’Hagan, D.: Biosynthesis of Polyketide MetaboHtes. Nat. Prod. Reports, 8, 573 (1991).CrossRefGoogle Scholar
  16. 16.
    Hopwood, D.A., and C. Khosla: Genes for Polyketide Secondary Metabolic Pathways in Microorganisms and Plants. In: Secondary Metabohtes: Their Function and Evolution (Ciba Foundation Symposium, 171), p. 88. Chichester-New York: Wiley. 1992.Google Scholar
  17. 17.
    Cane, D.E., and C.C. Yang: Macrolide Biosynthesis. Intact Incorporation of a Chain-Elongation Intermediate into Erythromycin. J. Am. Chem. Soc., 109, 1255 (1987).CrossRefGoogle Scholar
  18. 18.
    Cane, D.E., P.C. Prabhakaran, W. Tan, and W.R. Ott: Macrolide Biosynthesis. Mechanism of Polyketide Chain Elongation. Tetrahedron Lett., 32, 5457 (1991).CrossRefGoogle Scholar
  19. 19.
    Donadío, S., M.J. Staver, J.B. McAlpine, S.J. Swanson, and L. Katz: Modular Organization of Genes Required for Complex Polyketide Biosynthesis. Science, 252, 675 (1991).CrossRefGoogle Scholar
  20. 20.
    Cane, D.E., R.H. Lambalot, P.C. Prabhakaran, and W.R. Ott: Incorporation of Polyketide Chain Elongation Intermediates into Methymycin. J. Am. Chem. Soc., 115, 522 (1993).CrossRefGoogle Scholar
  21. 21.
    Yue, S., J.S. Duncan, Y. Yamamoto, and C.R. Hutchinson: Macrohde Biosynthesis. Tylactone Formation Involves the Processive Addition of Three Carbon Units. J. Am. Chem. Soc., 109, 1253 (1987).CrossRefGoogle Scholar
  22. 22.
    Cane, D.E., W. Tan, and W.R. Ott: Nargenin Biosynthesis. Incorporation of Polyketide Chain Elongation Intermediates and Support for a Proposed Intermolecular Diels-Alder Cyclization. J. Am. Chem. Soc., 115, 527 (1993).CrossRefGoogle Scholar
  23. 23.
    Patzelt, H., and J.A. Robinson: Biosynthesis of the Polyether Antibiotic Monensin A: Incorporation of a Polyketide Chain Elongation Intermediate. J. Chem. Soc., Chem. Commun., 16, 1258 (1993).CrossRefGoogle Scholar
  24. 24.
    Hailes, H.C., C.M. Jackson, P.F. Leadlay, S.V. Ley, and J. Staunton: Biosynthesis of Tetronasin, Part 1: Introduction and Investigation of the Diketide and Triketide Intermediates Bound to the Polyketide Synthase. Tetrahedron Lett., 35, 307 (1994).CrossRefGoogle Scholar
  25. 25.
    Hailes, H.C., H. Sandeep, F. Leadlay, I.C. Lennon, S.V. Ley, and J. Staunton: Biosynthesis of Tetronasin, Part 2: Identification of the Tetraketide Intermediate Attached to the Polyketide Synthase. Tetrahedron Lett., 35, 311 (1994).CrossRefGoogle Scholar
  26. 26.
    Hailes, H.C., H. Sandeep, F. Leadlay, I.C. Lennon, S.V. Ley, and J. Staunton: Biosynthesis of Tetronasin, Part 3: Preparation of Deuterium Labelled Tri- and Tetraketides as Putative Biosynthetic Precursor of Tetronasin. Tetrahedron Lett., 35, 315 (1994).CrossRefGoogle Scholar
  27. 27.
    Walser-volken, P.: Ph.D. Thesis. Basel: 1993.Google Scholar
  28. 28.
    Allinger, N.L., and U. Burkert: Molecular Mechanics (ACS Monograph, 171 ). Washington, DC: American Chemical Society. 1982.Google Scholar
  29. 29.
    Hesse, G.: In: Methoden der organischen Chemie (Houben-Weyl), Vol. Vl/ld, 4th Ed. ( E. Müller, O. Bayer, p. 224. Stuttgart: Thieme. 1978.Google Scholar
  30. 30.
    Luckner, M.: Secondary Metabolism in Microorganisms, Plants and Animals, 3rd Ed. Berlin-Heidelberg-New York: Springer. 1990.Google Scholar
  31. 31.
    Steiner, O., and Ch. Tamm: Synthetic Studies Towards Spirostaphylotrichins: Synthesis of Building Blocks. Tetrahedron Lett., 34, 6729 (1993).CrossRefGoogle Scholar
  32. 32.
    Harada, N., and K. Nakanishi: A Method for Determining the Chirahties of Optically Active Glycols. J. Am. Chem. Soc., 91, 3989 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1996

Authors and Affiliations

  • P. Walser-Volken
    • 1
  • Ch. Tamm
    • 1
  1. 1.Institut für Organische ChemieUniversität BaselSwitzerland

Personalised recommendations