Skip to main content

Fault-Detecting Network Membership Protocols for Unknown Topologies

  • Conference paper
Dependable Computing for Critical Applications 4

Part of the book series: Dependable Computing and Fault-Tolerant Systems ((DEPENDABLECOMP,volume 9))

Abstract

Network membership determines the set of faultless nodes and links in a computer network with point-to-point links. Our protocol solves this problem under a general combination of assumptions, which goes beyond known approaches in the fields of network exploration, distributed system level diagnosis and group membership:

  • Neither the topology nor a superset of the nodes are known in advance.

  • Mutual dependencies in the initial information of nodes are excluded. Consequently, global authentication based on signatures is not provided.

  • Faults may affect any number of nodes and cause nearly arbitrary behaviour.

The key issue of our solution is the application of special cryptographic functions instead of usual signatures for message authentication. According to the unlimited fault number the protocol is only fault-detecting, not tolerating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Alari, A. Ciuffoletti: Group membership in a synchronous distributed system; Fifth European workshop on dependable computing, EWDC-5, Lissabon, 1993.

    Google Scholar 

  2. A. Bagchi, S. L. Hakimi: An optimal algorithm for distributed system level diagnosis; FTCS-21 digest of papers, IEEE, 1991, pp. 214-221.

    Google Scholar 

  3. R. Bianchini, R. Buskens: An adaptive distributed system-level diagnosis algorithm and its implementation; FTCS-21, digest of papers, IEEE, 1991, pp. 222-229.

    Google Scholar 

  4. F. Cristian, H. Aghili, R. Strong, D. Dolev: Atomic broadcast: from simple message diffusion to byzantine agreement; FTCS-15, digest of papers, IEEE, 1985, pp. 200-206.

    Google Scholar 

  5. E. Chang: Echo algorithms: depth parallel operations on general graphs; IEEE Transactions on software engineering, vol. 8, no. 4, 1982, pp. 391–401.

    Article  Google Scholar 

  6. F. Cristian: Agreeing who is present and who is absent in a synchronous distributed system; FTCS-18, digest of papers, IEEE, 1988, pp. 206-211.

    Google Scholar 

  7. F. Cristian: Reaching agreement on processor-group membership in synchronous distributed systems; Distributed Computing, vol. 4, Springer, Heidelberg, 1991, pp. 175–187.

    Google Scholar 

  8. A. Dahbura, K. Sabnani, L. King: The comparison approach to multiprocessor fault diagnosis; Transactions on Computers, IEEE, vol. C-36, no. 3, march 1987, pp. 373–378.

    Article  Google Scholar 

  9. K. Echtle: Fehlermodellierung bei Simulation und Verifikation von Fehlertoleranz-Algorithmen für verteilte Systeme; Informatik-Fachberichte 83, Springer, Heidelberg, 1984, pp. 73–88.

    Google Scholar 

  10. K. Echtle: Fault-masking with reduced redundant communication; FTCS-16, digest of papers, IEEE, 1986, pp. 178-183.

    Google Scholar 

  11. K. Echtle: Fault masking and sequence agreement by a voting protocol with low message number; 6th symposium on reliability in distributed software and database systems, conf. proc., IEEE, 1987, pp. 149-160.

    Google Scholar 

  12. K. Echtle: Distance agreement protocols; FTCS-19, digest of papers, IEEE, 1989, pp. 191-198.

    Google Scholar 

  13. S. Goldwasser, S. Micali, R. Rivest: A digital signature scheme secure against adaptive chosen-message attacks; SIAM J. Comput., vol. 17, no. 2, 1988, pp 281–308.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Kopetz, G. Grünsteidl, J. Reisinger: Fault-tolerant membership service in a synchronous distributed real-time system; Int. working conference on dependable computing for critical applications, conf preprints, UCSB, 1989, pp. 167-174.

    Google Scholar 

  15. R. Kieckhafer, C. Walter, A. Finn, P. Thambidurai: The MAFT architecture for distributed fault tolerance; IEEE Transactions on computers, vol. 37, no. 4, 1988, pp. 398–405.

    Article  Google Scholar 

  16. J.-C. Laprie, J. Arliat, C. Beounes, K. Kanoun, C. Hourtolle: Hardware-and software-fault tolerance: definition and analysis of architectural solutions; FTCS-17, digest of papers, IEEE, 1987, pp. 116-121.

    Google Scholar 

  17. M. Leu: Relative signatures and their implementation; accepted paper for the First European Dependable Computing Conference EDCC-1, Berlin, oct. 1994.

    Google Scholar 

  18. J. Maeng, M. Malek: A comparison connection assignment for diagnosis of multiprocessor systems; FTCS-11, digest of papers, IEEE, 1981, pp. 173-175.

    Google Scholar 

  19. E. Maehle, K. Moritzen, K. Wirl: A graph model for diagnosis and reconfiguration and its application to a fault-tolerant multiprocessor system; FTCS-16, digest of papers, IEEE, 1986, pp. 292-297.

    Google Scholar 

  20. F. Preparata, G. Metze, R. Chien: On the connection assignment problem of diagnosable systems; IEEE Transactions on Computers, vol. 16, Dec. 1967, pp. 848–854.

    Article  MATH  Google Scholar 

  21. D. Powell: Error assumptions and evaluation of their influence on system dependability; in: Second European workshop on dependable computing, EWDC-2, Firenze, 1990.

    Google Scholar 

  22. R. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and public-key cryptosystems; Communications of the ACM, vol. 21, no. 2, acm, 1978, pp. 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Sengupta, A. Dahbura: On self-diagnosable multiprocessor systems: diagnosis by the comparison approach; FTCS-19, digest of papers, IEEE, 1989, pp. 54-61.

    Google Scholar 

  24. A. Segall: Distributed network protocols; IEEE Transactions on Information Theory, vol. 29, no. 1, 1983, pp. 23–35.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Schmeichel, S. L. Hakimi, M. Otsuka, G. Sullivan: On minimizing testing rounds for fault identification; FTCS-I8, digest of papers, IEEE, 1988, pp. 266-271.

    Google Scholar 

  26. H. Strong, D. Dolev: Byzantine agreement; Compcon 83, conf. proc., IEEE, 1983, pp. 77-81.

    Google Scholar 

  27. N. Vaidya, D. Pradhan: System level diagnosis: combining detection and location; FTCS-21, digest of papers, IEEE, 1991, pp. 488-495. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

Echtle, K., Leu, M. (1995). Fault-Detecting Network Membership Protocols for Unknown Topologies. In: Cristian, F., Le Lann, G., Lunt, T. (eds) Dependable Computing for Critical Applications 4. Dependable Computing and Fault-Tolerant Systems, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9396-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9396-9_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9398-3

  • Online ISBN: 978-3-7091-9396-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics