Skip to main content

Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists)

  • Chapter

Summary

The importance of the surface structure and chemistry in zoospores and cysts of oomycetes is briefly reviewed and the organelle systems associated with encystment described. The surface structure and chemistry of primary and secondary zoospores and cysts of Saprolegnia diclina (a representative saprophytic species) and S. parasitica (a representative salmonid fish pathogen) were explored using the lectins concanavilin A (Con A and wheat germ agglutinin (WGA) and monoclonal antibodies (MAbs) raised against a mixed zoospore and cyst suspension of S. parasitica. The binding of lectins and antibodies to spores was determined using immunofluorescence microscopy with fluorescein isothiocyanate-labelled probes and with electron microscopy with gold-conjugated probes applied to spore suspensions post-fixation. In both species Con A, which is specific for glucose and mannose sugars, bound to both the surface of primary and secondary zoospores (the surface glycocalyx) and their cyst coats and readily induced zoospore encystment. The binding to the cysts appeared to be mainly associated with the matrix material released from the primary and secondary encystment vesicles and which appeared to diminish with time. No binding to germ tube walls was observed with this lectin. The MAb labelling showed a generally similar binding pattern to the primary and secondary cysts to that observed with Con A, although the binding to zoospores was more variable. Primary zoospores bound the antibodies but secondary zoospores appeared less reactive. It is suggested that the MAbs share a common epitope with one or more of the Con A-binding components. In both species WGA, which is specific for amongst other things the sugar N-acetyl glucosamine, bound to localised apical patches on the primary zoospores. This lectin also binds to the ventral groove region of secondary zoospores of S. diclina, which were induced to encyst by this lectin. In contrast secondary zoospores of S. parasitica were not induced to encyst by the addition of WGA and showed a patchy dorsal binding with this lectin. WGA also binds to both the inner wall of discharged primary cysts and the young germ tube walls of both species. These observations are discussed both in relation to other oomycete spores and to their possible functional and ecological significance

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BSA:

bovine serum albumin

Con A:

Concanavalin A

DBA:

Dolichos biflorus agglutinin

ELISA:

enzyme-linked immunosorbent assay

EM:

electron microscope

EV:

encystment vesicles

FCS:

foetal calf serum

FITC:

Fluorescein isothiocyanate

FV:

peripheral fibrillar vesicles

G + F 0.2%:

glutaraldehyde and 2.0% formaldehyde primary fixative solution

2G 2%:

glutaraldehyde primary fixative

LM:

light microscopy

MAbs:

monoclonal antibodies

LPV:

large peripheral vesicles

PBS:

phosphate buffered saline

PCV:

flattened peripheral cisternae

PEV:

primary encystment vesicle

PIPES:

piperazine-N,Nl-bis(2-ethane sulfonic acid)

PNA:

Ricinus communis agglutinin

RAM-FITC/Au10–20 :

Fluorescein isothiocyanate/gold (10 or 20 nm) labelled rabbit anti-mouse immunoglobulin

RCA:

Ricinus communis agglutinin

SEM:

scanning electron micrograph

SBA:

soybean agglutinin

SEV:

secondary encystment vesicles

TEM:

transmission electron micrograph

UEA I:

Ulex europaeus agglutinin

WGA:

wheat germ agglutinin

References

  • Bacic A, Williams ML, Clarke AE (1985) Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi: nature of the surface saccharides as determined by quantitative lectin binding studies. J Histochem Cytochem 33: 384–388

    Article  PubMed  CAS  Google Scholar 

  • Beakes GW (1983) A comparative account of cyst coat ontogeny in saprophytic and fish-lesion (pathologenic) isolates of the Saprolegnia diclina-parasitica complex. Can J Bot 61: 603–625

    Article  Google Scholar 

  • Beakes GW (1987) Oomycete phylogeny: ultrastructural perspectives. In: Rayner ADM, Brasier CM, Moore D (eds) Beakes GW, pp 405–421 ( British Mycological Society symposium volume )

    Google Scholar 

  • Beakes GW (1989) Oomycete fungi: their phylogeny and relationship to chromophyte algae. In: Green JC, Leadbetter BSC, Diver WL (eds) The chromophyte algae: problems and perspectives. Clarendon Press, Oxford, pp 323–340

    Google Scholar 

  • Berbee ML, Kerwin JL (1993) Ultrastructural and light microscopic localization of carbohydrates and peroxidase/catalases in Lagenidium giganteum zoospores. Mycologia 85: 734–743

    Article  CAS  Google Scholar 

  • Bimpong CE, Hickman CJ (1975) Ultrastructural and cytochemical studies of zoospores, cysts, and germinating cysts of Phytophthora palmirora. Can J Bot 53: 1310–1327

    Article  Google Scholar 

  • Bolwell GP, Callow JA, Callow ME, Evans LV (1979) Fertilisation in brown algae. II. Evidence for lectin-sensitive complementary receptors involved in gamete recognition in Fucus serratus. J Cell Sci 36: 19–30

    PubMed  CAS  Google Scholar 

  • Burr AW (1991) Comparative diplanetic developmental processes of salmonid-pathogenic and saprophytic isolates of the Saprolegnia diclina-parasitica complex. PhD Thesis, Newcastle University, Newcastle upon Tyne, UK

    Google Scholar 

  • Byrt P, Irving HR, Grant BR (1982 a) The effect of cations on zoospores of the fungus Phytophthora cinnamomi. J Gen Microbiol 128: 1189–1198

    CAS  Google Scholar 

  • Byrt P, Irving HR, Grant BR (1982 b) The effect of organic compounds on the encystment, viability and germination of Phytophthora cinnamomi. J Gen Microbiol 98: 599–s602

    Google Scholar 

  • Cameron JN, Carlile MJ (1977) Negative geotaxis of zoospores of the fungus Phytophthora. J Gen Microbiol 120: 347–353

    Google Scholar 

  • Cameron JN, Carlile MJ (1980) Negative chemotaxis of zoospores of the fungus Phytophthora palmivora. J Gen Microbiol 120: 347–353

    CAS  Google Scholar 

  • Cameron JN, Carlile MJ (1981) Binding of isovaleraldehyde, an attractant, to zoospores of the fungus Phytophthora palmivora in relation to zoospore chemotaxis. J Cell Sci 49: 273–281

    PubMed  CAS  Google Scholar 

  • Cerenius L, Olson LW, Lange L, Soderhäll K (1984) The secondary zoospore of Aphanomyces astaci and A. laevis ( Oomycetes, Saprolegniales). Nordic J Bot 4: 697–706

    Article  Google Scholar 

  • Cho CW Fuller MS (1989) Ultrastructural studies of encystment and germination in Phytophthora palmivora. Mycologia 8: 539–548

    Article  Google Scholar 

  • Deacon JW (1988) Behavioural responses of fungal zoospores. Microbiol Sci 5: 249–252

    PubMed  CAS  Google Scholar 

  • Dietrich SMC, Campos GMA (1978) Effect of polyoxin-D on Achlya radiosa. J Gen Microbiol 105: 161–164

    CAS  Google Scholar 

  • Estrada-Garcia M-T, Callow JA, Green JR (1989) Monoclonal antibodies to cell surface components of zoospores and cysts of the fungus Pythium aphanidermatum reveal species specific antigens. Exp Mycol 13: 348–355

    Article  Google Scholar 

  • Estrada-Garcia M-T, Green JR, Booth JM, White JG, Callow JA (1990 a) Monoclonal antibodies to the adhesive cell coat secreted by Pythium aphanidermatum zoospores recognise 200 x 103 Mr glycoproteins stored within large peripheral vesicles. J Cell Sci 95: 199–906

    CAS  Google Scholar 

  • Estrada-Garcia M-T, Ray TC, Green JR, Callow JA, Kennedy JF (1990 b) Encystment of Pythium aphanidermatum zoospores is induced by root mucilage polysaccharides, pectin and a monoclonal antibody to a surface antigen. J Exp Bot 41: 693–699

    Article  CAS  Google Scholar 

  • Grove SN, Bracker CE (1978) Protoplasmic changes during zoospores encystment and cyst germination in Pythium aphanidermatum. Exp Mycol 2: 51 - 98

    Article  Google Scholar 

  • Gubler F, Hardham AR (1988) Secretion of adhesive material during encystment of Phytophthora cinnamomi zoospores characterised by immunogold labelling with monoclonal antibodies to components of peripheral vesicles. J Cell Sci 90: 225–235

    Google Scholar 

  • Gubler F, Hardham AR (1990) Protein storage in large peripheral vesicles in Phytophthora zoospores. Exp Mycol 14: 393–404

    Article  CAS  Google Scholar 

  • Gubler F, Hardham AR Duniec J (1989) Characterising adhesiveness of Phytophthora cinnamomi zoospores during encystment. Protoplasma 149: 24–30

    Article  Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987) Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    Article  PubMed  CAS  Google Scholar 

  • Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239: 288–290

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR (1985) Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi. the influence of fixation on patterns of lectin binding. J Histochem Cytochem 33: 110–118

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR (1989) Lectin and antibody labelling of surface components of spores of Phytophthora cinnamomi. Aust J Plant Physiol 16: 19– 32

    Article  CAS  Google Scholar 

  • Hardham AR, Gubler F (1990) Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging tube. Cell Biol Int Rep 14: 947–956

    Article  Google Scholar 

  • Hardham AR, Suzaki E (1986) Encystment of zoospores of the fungus Phyto-phthora cinnamomi is induced by specific lectin and monoclonal antibody binding to the cell surface. Protoplasma 133: 165–173

    Article  CAS  Google Scholar 

  • Hardham AR, Suzaki E ( 1990 Glycoconjugates on the surfaces of spores of the path-ogenic fungus Phytophthora cinnamomi studied using fluorescence and electron microscopy and flow cytometry. Can J Microbiol 36: 183–192

    Article  CAS  Google Scholar 

  • Hardham AR, Suzaki E Perkin JL (1985) The detection of monoclonal antibodies specific for the surface components on zoospores and cysts of Phytophthora cinnamomi. Exp Mycol 9: 264–268

    Article  Google Scholar 

  • Hardham AR, Suzaki E Perkin JL (1986) Monoclonal antibodies to isolate-, species-, and genus-specific components on the surface of zoospores and cysts of the fungus Phytophthora cinnamomi. Can J Bot 64: 311–321

    Article  Google Scholar 

  • Hardham AR, Gubler F, Duniec J (1991 a) Ultrastructural and immunological studies of zoospores of Phytophthora. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora Cambridge University Press, Cambrige, pp 50–69

    Google Scholar 

  • Hardham AR, Gubler F, Duniec J, Elliott J (1991 b) A review of methods for the production and use of monoclonal antibodies to study zoosporic plant path-ogens. J Microsc 162: 305–318

    Google Scholar 

  • Hardham AR, Cahill DM, Cope M, Gabor BK, Gubler F, Hyde GF (1994) Cell surface antigens of Phytophthora spores: biological and taxonomic characterization. Protoplasma 181: 213–232

    Article  Google Scholar 

  • Heath IB, Greenwood AD (1970) Wall formation in the Saprolegniales. II. Formation of cysts by zoospores of Saprolegnia and Dictyuchus. Arch Mikrobiol 75: 67–79

    Article  Google Scholar 

  • Hegnauer H, Hohl HR (1973) A structural comparison of cyst and germ tube walls in Phytophthora palmivora. Protoplasma 77: 151–163

    Article  Google Scholar 

  • Hemmes DE, Hohl HR (1971) Ultrastructural aspects of encystation and cyst-germination in Phytophthora parasitica. J Cell Sci 9: 175–191

    PubMed  CAS  Google Scholar 

  • Hinch JM, Clarke AE (1980) Adhesion of fungal zoospores to root surfaces is mediated by carbohydrate determinants of the root slime. Physiol Plant Pathol 16: 303–307

    CAS  Google Scholar 

  • Hoch HC, Michell JE (1972) The ultrastructure of zoospores of Aphanomyces euteiches and of their encystment and subsequent germination. Protoplasma 75: 113–138

    Article  Google Scholar 

  • Holloway SA, Heath IB (1977) An ultrastructural analysis of the changes in organelle arrangement and structure between the various spore types of Saprolegnia. Can J Bot 55: 1328–1339

    Article  Google Scholar 

  • Irving HR, Grant BR (1984) The effects of pectin and plant root surface carbohydrates on encystment and development of Phytophthora cinnamomi zoospores. J Gen Microbiol 130: 1015–1018 3

    Google Scholar 

  • Jen CJ, Haug A (1979) Concanavalin A-induced lysis of zoospores of Blastocladiella emersonii. Exp Cell Res 120: 425–428

    Article  PubMed  CAS  Google Scholar 

  • Jones JL, Callow J A, Green JR (1988) Monoclonal antibodies to sperm surface antigens of the brown alga Fucus serratus exhibit region-, gamete-, species-, and genus-preferential binding. Planta 176: 298–306

    Article  Google Scholar 

  • Jones SW, Donaldson SP, Deacon JW (1991) Behaviour of zoospores and zoospore cysts in relation to root infection by Pythium aphanidermatum. New Phytol 117: 289–301 3

    Google Scholar 

  • Kerwin JL, Grant DF, Berbee MI (1991) Specific induction of encystment of Lagenidium giganteum zoospores by concanavalin A and derivatives of chitin and chitosan. Protoplasma 161: 43– 51

    Article  CAS  Google Scholar 

  • Lehnen LP, Powell MJ (1988) Cytochemical localisation of carbohydrates in zoospores of Saprolegnia ferax. Mycologia 80: 423– 432

    Google Scholar 

  • Lehnen LP, Powell MJ (1989) The role of kinetosome-associated organelles in the attachment of encysting secondary zoospores of Saprolegnia ferax to substrates. Protoplasma 149: 163–174

    Article  Google Scholar 

  • Lehnen LP, Powell MJ (1991) Formation of K2-bodies in primary cysts of Saprolegnia ferax. Mycologia 83: 163–179

    Article  Google Scholar 

  • Lehnen LP, Powell MJ (1993) Characterisation of cell surface carbohydrates on asexual spores of the water mold Saprolegnia ferax. Protoplasma 175: 161–172

    Article  CAS  Google Scholar 

  • Lin CC, Aronson JM (1976) Chitin and cellulose in the cell walls of the oomycete Apodachlya sp. Arch Mikrobiol 72: 111–114

    Article  Google Scholar 

  • Longman D, Callow JA (1987) Specific saccharide residues are in-volved in the recognition of plant root surfaces by zoospores of Pythium aphanidermatum. Physiol Mol Plant Pathol 30: 139–150

    Article  CAS  Google Scholar 

  • Lunney CZ, Bland CE (1976) Ultrastructural observations of mature and encysting zoospores of Pythium proliferum de Bary. Protoplasma 90: 119–137

    Article  Google Scholar 

  • Manton I, Clarke B, Greenwood AD (1951) Observations with the electron microscope on a species of Saprolegnia. J Exp Bot 2: 321–331

    Article  Google Scholar 

  • Mitchell RT, Deacon JW (1987) Differential adhesion of zoospore cysts of Pythium on roots of graminiceous and non-graminiceous plants. Trans Br Mycol Soc 88: 401–433

    Article  Google Scholar 

  • Nyhlen L, Unestam T (1978) Cyst and germ tube wall structure in Aphanomyces astaci, Oomycetes. Can J Microbiol 24: 1296–1299

    Article  PubMed  CAS  Google Scholar 

  • Paktitis S, Grant B, Lawrie A (1986) Surface changes in Phytophthora palmivora zoospores following induced differentiation. Protoplasma 135: 119–129

    Article  Google Scholar 

  • Pickering AD, Willoughby LG, McGrory CB (1979) Fine structures of secondary zoospore cyst cases of Saprolegnia isolates from infected fish. Trans Br Mycol Soc 72: 427–436

    Article  Google Scholar 

  • Powell J, Bracker CE (1986) Distribution of diaminobenzidine reaction products in zoospores of Phytophthora palmivora. Mycologia 78: 892–900

    Article  CAS  Google Scholar 

  • Sadowski LA, Powell ME (1990) Cytochemical detection of polysaccharides in zoospores of Aphanomyces euteiches. Can J Bot 68: 1379–1388

    Article  CAS  Google Scholar 

  • Sing VO, Bartnicki-Garcia S (1975 a) Adhesion of Phytophthora palmivora zoospores: electron microscopy of cell attachment and cyst wall fibril formation. J Cell Sci 18: 123–132

    PubMed  CAS  Google Scholar 

  • Sing VO, Bartnicki-Garcia S (1975 b) Adhesion of Phytophthora palmivora zoospores: detection and ultrastructural visualisation of concanavalin A-receptor sites appearing during encystment. J Cell Sci 19: 11–20

    PubMed  CAS  Google Scholar 

  • Smith SN, Armstrong RA, Rimmer J J (1984) Influence of environmental factors on zoospores of Saprolegnia diclina. Trans Br. Mycol Soc 82: 413–421

    Article  CAS  Google Scholar 

  • Toroscantucci A, Palma C, Boccamera M, Ausiella CM, Spagnioli CG, Cassone A (1990) Lymphoproliferative and cytotoxic responses in human peripheral blood mononuclear cells to man- noprotein constituents of Candida albicans. J Gen Microbiol 136: 2155–2163

    Google Scholar 

  • Whiffen A J (1945) Nutritional studies of representatives of five genera of Saprolegniaceae. J Eli Mitch Sci Soc 61: 114–123

    Google Scholar 

  • Williams ML, Bacic A, Clarke AE (1984) A method for estimating lectin binding to fungal zoospores and cysts. Exp Mycol 8: 238– 244

    Article  CAS  Google Scholar 

  • Willoughby LG (1978) Saprolegnias of salmonid fish in Windermere: a critical analysis. J Fish Dis 1: 51–67

    Article  Google Scholar 

  • Willoughby LG (1986) An ecological study of water as the medium for growth and reproduction of the Saprolegnia from salmonid fish. Trans Br Mycol Soc 87: 493–502

    Article  Google Scholar 

  • Wood SE, Willoughby LG, Beakes GW (1988) Experimental studies on uptake and interaction of spores of the Saprolegnia diclinaparasitica complex with external mucous of brown trout (Salmo trutta). Trans Br Mycol Soc 90: 63–67

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Burr, A.W., Beakes, G.W. (1994). Characterization of zoospore and cyst surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycete fungal protists). In: Wetherbee, R., Pickett-Heaps, J.D., Andersen, R.A. (eds) The Protistan Cell Surface. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9378-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9378-5_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9380-8

  • Online ISBN: 978-3-7091-9378-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics