Skip to main content

Cell surface antigens of Phytophthora spores: biological and taxonomic characterization

  • Chapter
The Protistan Cell Surface
  • 136 Accesses

Summary

The oomycetes are a class of protists that produce biflagellate asexual zoospores. Members of the oomycetes have close phylogenetic affinities with the chromophyte algae and are widely divergent from the higher fungi. This review focuses on two genera, Phytophthora and Pythium, which belong to the family Pythiaceae, and the order Peronosporales. These two genera contain many species that cause serious diseases in plants. Molecules on the surface of zoospores and cysts of these organisms are likely to play crucial roles in the infection of host plants. Knowledge of the properties of the surface of these cells should thus help increase our understanding of the infection process. Recent studies of Phytophthora cinnamomi and Pythium aphanidermatum have used lectins to analyse surface carbohydrates and have generated monoclonal antibodies (MAbs) directed towards a variety of zoospore and cysts surface components. Labelling studies with these probes have detected molecular differences between the surface of the cell body and of the flagella of the zoospores. They have been used to follow changes in surface components during encystment, including the secretion of an adhesive that bonds the spores to the host surface. Binding of lectin and antibody probes to the surface of living zoospores can induce encystment, giving evidence of cell receptors involved in this process. Freeze-substitution and immunolabelling studies have greatly augmented our understanding of the synthesis and assembly of the zoospore surface during zoosporogenesis. Synthesis of a variety of zoospore components begins when sporulation is induced. Cleavage of the multinucleate sporangium is achieved through the progressive extension of partitioning membranes, and a number of surface antigens are assembled onto the zoospore surface during cleavage. Comparisons of antibody binding to many isolates and species of Phytophthora and Pythium have revealed that surface components on zoospores and cysts exhibit a range of taxonomic specificities. Surface antigens or epitopes may occur on only a few isolates of a species; they may be species-specific, genus-specific or occur on the spores of both genera. Spore surface antigens thus promise to be of significant value for studies of the taxonomy and phylogeny of these protists, as well as for disease diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

MAbs:

monoclonal antibodies

ConA:

Concanavalin A

SBA:

soybean agglutinin

WGA:

wheat germ agglutinin

gps:

glycoproteins

References

  • Adler J (1976) The sensing of chemicals by bacteria. Scient Am 234: 40–47

    CAS  Google Scholar 

  • Ali-Shtayeh MS, MacDonald JD, Kabashima J (1991) A method for using commercial ELISA tests to detect zoospores of Phytophthora and Pythium species in irrigation water. Plant Dis 75: 305–311

    CAS  Google Scholar 

  • Anderson MA, Sandrin MS, Clarke AE (1984) A high proportion of hybridomas raised to a plant extract secrete antibody to arabinose or galactose. Plant Physiol 75: 1013–1016

    PubMed  CAS  Google Scholar 

  • Arms K, Camp PS (1979) Biology. Holt, Rinehart and Winston, WB Saunders, New York

    Google Scholar 

  • Bacic A, Williams ML, Clarke AE (1985) Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi: nature of the surface saccharides as determined by quantitative lectin binding studies. J Histochem Cytochem 33: 384–388

    PubMed  CAS  Google Scholar 

  • Bailey AM, Mena GL, Herrera-Estrella L (1991) Genetic transformation of the plant pathogens Phytophthora capsici and Phytophthora parasitica. Nucleic Acids Res 19: 4273–4278

    PubMed  CAS  Google Scholar 

  • Bailey AM, Mena GL, Herrera-Estrella L (1993) Transformation of four pathogenic Phytophthora spp. by microprojectile bombardment on intact mycelia. Curr Genet 23: 42–46

    PubMed  CAS  Google Scholar 

  • Barr DJS (1981) The phylogenetic and taxonomic implications of flagellar rootlet morphology among zoosporic fungi. BioSystems 14: 359–370

    PubMed  CAS  Google Scholar 

  • Barr DJS (1983) The zoosporic grouping of plant pathogens. Entity or non-entity? In: Buczacki ST (ed) Zoosporic plant pathogens. A modern perspective. Academic Press, London, pp 43–83

    Google Scholar 

  • Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phylogeny. In: Harborne JB (ed) Phytochemical phylogeny, Academic Press, London, pp 81–103

    Google Scholar 

  • Bartnicki-Garcia S (1987) The cell wall: a crucial structure in fungal evolution. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 389–403

    Google Scholar 

  • Bartnicki-Garcia S, Wang MC (1983) Biochemical aspects of morphogenesis in Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds) Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 121–137

    Google Scholar 

  • Bouck GB (1971) The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromonas flagellum. J Cell Biol 50: 362–384

    PubMed  CAS  Google Scholar 

  • Bu’Lock JD, Osagie AU (1976) Sterol biosynthesis via cycloartenol in Saprolegnia. Phytochemistry 15: 1249–1251

    Google Scholar 

  • Burr AW, Beakes GW (1994) A comparative study of zoospore and cysts surface structure in saprophytic and fish pathogenic Saprolegnia species (oomycetes fungi) using lectins and monoclonal antibodies. Protoplasma 181: 142–163

    Google Scholar 

  • Burrell RG, Clayton CW, Gallegly ME, Lilly VG (1966) Factors affecting the antigenicity of the mycelium of three species of Phytophthora. Phytopathology 56: 422–426

    Google Scholar 

  • Cahill DM, Hardham AR (1994) Exploitation of zoospore taxis in the development of a novel dipstick immunoassay for the specific detection of Phytophthora cinnamomi. Phytopathology 84: 193–200

    Google Scholar 

  • Carlile MJ (1966) The orientation of zoospores and germ-tubes. In: Madelin MF (ed) The fungal spore, Butterworths, London, pp 175–186

    Google Scholar 

  • Carlile MJ (1983) Motility, taxis, and tropism in Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds) Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathology Society, St. Paul, MN, pp 95–107

    Google Scholar 

  • Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14: 461–81

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1986) The kingdom Chromista: origin and systematics. Prog Phycol Res 4: 309–347

    Google Scholar 

  • Dewey FM (1990) The use of monoclonal antibodies to detect plant invading fungi. In: Schots A (eds) Monoclonal antibodies in agriculture. Pudoc, Wageningen, pp 21–25

    Google Scholar 

  • Dick MW (1989) Phylum Oomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 661–685

    Google Scholar 

  • Dudler R (1990) The single-copy actin gene of Phytophthora megasperma encodes a protein considerably diverged from any other known actin. Plant Mol Biol 14: 415–422

    PubMed  CAS  Google Scholar 

  • Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) (1983) Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Estrada Garcia MT, Green JR, Booth JM, White JG, Callow JA (1989) Monoclonal antibodies to cell surface components of zoospores and cysts of the fungus Pythium aphanidermatum reveal species-specific antigens. Exp Mycol 13: 348–355

    Google Scholar 

  • Estrada Garcia MT, Callow JA, Green JR (1990 a) Monoclonal antibodies to the adhesive cell coat secreted by Pythium aphanidermatum zoospores recognise 200 x 103 Mr glycoproteins stored within large peripheral vesicles. J Cell Sci 95: 199–206

    Google Scholar 

  • Estrada Garcia MT, Ray TC, Green JR, Callow JA, Kennedy JF (1990 b) Encystment of Pythium aphanidermatum zoospores is induced by root mucilage polysaccharides, pectin and a monoclonal antibody to a surface antigen. J Exp Biol 41: 693–699

    Google Scholar 

  • Evans PT, Holaway BL, Malmberg RL (1988) Biochemical differentiation in the tobacco flower probed with monoclonal antibodies. Planta 175: 259–269

    Google Scholar 

  • Foster H, Coffey MD, Elwood H, Sogin ML (1990) Sequence analysis of the small subunit ribosomal RNAs of three zoosporic fungi and implications for fungal evolution. Mycologia 82: 306–312

    Google Scholar 

  • Gabor BK, O’Gara ET, Philip BA, Horan DP, Hardham AR (1993) Specificities of monoclonal antibodies to Phytophthora cinnamomi in two rapid diagnostic assays. Plant Dis 77: 1189–1197

    Google Scholar 

  • Gallegly ME (1983) New criteria for classifying Phytophthora and critique of existing approaches. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds) Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 167–172

    Google Scholar 

  • Gubler F, Hardham AR (1988) Secretion of adhesive material during encystment of Phytophthora cinnamomi zoospores, characterized by immunogold labelling with monoclonal antibodies to components of peripheral vesicles. J Cell Sci 90: 225–235

    Google Scholar 

  • Gubler F, Hardham AR (1990) Protein storage in large peripheral vesicles in Phytophthora zoospores and its breakdown after cyst germination. Exp Mycol 14: 393–404

    CAS  Google Scholar 

  • Gubler F, Hardham AR (1991) The fate of peripheral vesicles in zoospores of Phytophthora cinnamomi during infection of plants. In: Mendgen K, Lesemann D-E (eds) Electron microscopy of plant pathogenesis. Springer, Berlin Heidelberg New York Tokyo, pp 197–210

    Google Scholar 

  • Gubler F, Hardham AR Duniec J (1989) Characterising adhesiveness of Phytophthora cinnamomi zoospores during encystment. Protoplasma 149: 24–30

    Google Scholar 

  • Gunderson JH, Elwood H, Ingold A, Kindle K, Sogin ML (1987)

    Google Scholar 

  • A. R. Hardham etal.: Cell surface antigens of Phytophthora spores Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc Natl Acad Sci USA 84: 5823–5827

    Google Scholar 

  • Halsall DM (1976) Specificity of cytoplasmic and cell-wall antigens from four species of Phytophthora. J Gen Microbiol 94: 149–158

    PubMed  CAS  Google Scholar 

  • Hardham AR (1985) Studies on the cell surface of zoospores and cysts of the fungus Phytophthora cinnamomi: the influence of fixation on patterns of lectin binding. J Histochem Cytochem 33: 110–118

    PubMed  CAS  Google Scholar 

  • Hardham AR (1987 a) Ultrastructure and serial section reconstruction of zoospores of the fungus Phytophthora cinnamomi. Exp Mycol 11: 297–306

    Google Scholar 

  • Hardham AR (1987 b) Microtubules and the flagellar apparatus in zoospores and cysts of the fungus Phytophthora cinnamomi. Protoplasma 137: 109–124

    Google Scholar 

  • Hardham AR (1989) Lectin and antibody labelling of surface components of spores of Phytophthora cinnamomi. Aust J Plant Physiol 16: 19–32

    CAS  Google Scholar 

  • Hardham AR, Gubler F (1990) Polarity of attachment of zoospores of a root pathogen and pre-alignment of the emerging germ tube. Cell Biol Int Rep 14: 947–956

    Google Scholar 

  • Hardham AR, Suzaki E (1986) Encystment of zoospores of the fungus, Phytophthora cinnamomi, is induced by specific lectin and monoclonal antibody binding to the cell surface. Protoplasma 133: 165–173

    CAS  Google Scholar 

  • Hardham AR, Suzaki E (1990) Glycoconjugates on the surface of the pathogenic fungus Phytophthora cinnamomi studied using fluorescence and electron microscopy and flow cytometry. Can J Microbiol 36: 183–192

    CAS  Google Scholar 

  • Hardham AR, Suzaki E, Perkin JL (1985) The detection of monoclonal antibodies specific for surface components on zoospores and cysts of Phytophthora cinnamomi. Exp Mycol 9: 264–268

    Google Scholar 

  • Hardham AR, Suzaki E, Perkin JL (1986) Monoclonal antibodies to isolate-, species- and genus-specific components on the surface of zoospores and cysts of the fungus Phytophthora cinnamomi. Can J Bot 64: 311–321

    Google Scholar 

  • Hardham AR, Gubler F, Duniec J ( 1991 a) Ultrastructural and immunological studies of zoospores of Phytophthora. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, pp 50–69

    Google Scholar 

  • Hardham AR, Gubler F, Duniec J, Elliott J (1991 b) A review of methods for the production and use of monoclonal antibodies to study zoosporic plant pathogens. J Microsc 162: 305–318

    Google Scholar 

  • Heath IB (1980) Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Int Rev Cytol 64: 1–80

    PubMed  CAS  Google Scholar 

  • Heath IB, Greenwood AD, Griffiths HB (1970) The origin of flimmer in Saprolegnia, Dictyuchus, Synura and Cryptomonas. J Cell Sci 7: 445–461

    PubMed  CAS  Google Scholar 

  • Hemmes DE (1983) Cytology of Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 9–40

    Google Scholar 

  • Hill FG, Outka DE (1974) The structure and origin of mastigonemes in Ochromonas minute and Monas sp. J Protozool 21: 299–312

    PubMed  CAS  Google Scholar 

  • Hohl HR, Hamamoto ST (1967) Ultrastructural changes during zoospore formation in Phytophthora parasitica. Amer J Bot 54: 1131–1139

    CAS  Google Scholar 

  • Holwill MEJ (1982) Dynamics of eukaryotic flagellar movement. In: Amos WB, Duckett JG (eds) Prokaryotic and eukaryotic flagella. Cambridge University Press, Cambridge, pp 289–312

    Google Scholar 

  • Hutter R, DeMoss J (1967) Organization of the tryptophan pathway: a phylogenetic study of the fungi. J Bacteriol 94: 1896–1907

    PubMed  CAS  Google Scholar 

  • Hyde GJ, Hardham AR (1993) Microtubules regulate the generation of polarity in zoospores of Phytophthora cinnamomi. Eur J Cell Biol 62: 75–85

    PubMed  CAS  Google Scholar 

  • Hyde GJ, Gubler F, Hardham AR (1991 a) Ultrastructure of zoospore-genesis in Phytophthora cinnamomi. Mycol Res 95: 577–591

    Google Scholar 

  • Lancelle S, Hepler PK, Hardham AR (1991 b) Freeze substitution reveals a new model for sporangial cleavage in Phytophthora, a result with implications for cytokinesis in other eukaryotes. J Cell Sci 100: 735–748

    PubMed  Google Scholar 

  • Jahn TL, Landman MD, Fonseca JR (1964) The mechanism of locomotion of flagellates. II. Function of the mastigonemes of Ochromonas. J Protozool 11: 291–296

    Google Scholar 

  • Judelson HS, Michelmore RV (1989) Structure and expression of a gene encoding heat-shock protein Hsp70 from the oomycete fungus Bremia lactucae. Gene 79: 207–217

    PubMed  CAS  Google Scholar 

  • Judelson HS, Michelmore RV (1991) Transient expression of genes in the oomycete Phytophthora infestans using Bremia lactucae regulatory sequences. Curr Genet 19: 453–459

    CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4: 602–607

    PubMed  CAS  Google Scholar 

  • Judelson HS, Tyler BM, Michelmore RW (1992) Regulatory sequences for expressing genes in oomycete fungi. Mol Gen Genet 234: 138–146

    PubMed  CAS  Google Scholar 

  • Judelson HS, Coffey MD, Arredondo FR, Tyler BM (1993) Transformation of the oomycete pathogen Phytophthora megasperma f.sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23: 211–218

    PubMed  CAS  Google Scholar 

  • Karlovsky P, Prell HH (1991) The TRP1 gene of Phytophthora parasitica encoding indole-3-glycerolphosphate synthase-N-(5′- phosphoribosyl)anthranilate isomerase: structure and evolutionary distance from homologous fungal genes. Gene 109: 161–165

    PubMed  CAS  Google Scholar 

  • Kinghorn JR, Moon RP, Unkles SE, Duncan JM (1991) Gene structure and expression in Phytophthora infestans and the development of gene-mediated transformation. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, pp 295–311

    Google Scholar 

  • Knox JP, Roberts K (1989) Carbohydrate antigens and lectin receptors of the plasma membrane of carrot cells. Protoplasma 152: 123–129

    Google Scholar 

  • Krywiencyzk J, Dorworth CE (1980) Serological relationships of some fungi of the genus Pythium. Can J Bot 58: 1412–1417

    Google Scholar 

  • Leedale GF, Leadbetter BSC, Massalski A (1970) The intracellular origin of flagellar hairs in the Chrysophyceae and Xanthophyceae. J Cell Sci 6: 710–719

    Google Scholar 

  • Lehnen LR Jr, Powell MJ (1988) Cytochemical localization of carbohydrates in zoospores of Saprolegnia ferax. Mycologia 80: 423–432

    CAS  Google Scholar 

  • Lehnen LR Jr, Powell MJ (1989) The role of kinetosome-associated organelles in the attachment of encysting secondary zoospores of Saprolegnia ferax to substrates. Protoplasma 149: 163–174

    Google Scholar 

  • Lehnen LR Jr, Powell MJ (1993) Characterization of cell surface carbohydrates on asexual spores of the water mold Saprolegnia ferax. Protoplasma 175: 161–172

    CAS  Google Scholar 

  • Loiseaux S (1973) Ultrastructure of zoidogenesis in unilocular zoidocysts of several brown algae. J Phycol 9: 277–289

    Google Scholar 

  • MacDonald JD, Duniway JM (1979) Use of fluorescent antibodies to study the survival of Phytophthora megasperma and P. cinnamomi zoospores in soil. Phytopathology 69: 436–441

    Google Scholar 

  • MacDonald JD, Stites J, Kabashima J (1990) Comparison of serological and culture plate methods for detecting species of Phytophthora, Pythium, and Rhizoctonia in ornamental plants. Plant Dis 74: 665–659

    Google Scholar 

  • Malajezuk N, McComb AJ, Parker CA (1975) An immunofluorescence technique for detecting Phytophthora cinnamomi Rands. Aust J Bot 23: 289–309

    Google Scholar 

  • Manavathu EK, Suryanarayana K, Hasnain SE, Leung W (1988) DNA-mediated transformation in the aquatic filamentous fungus Achlya ambisexualis. J Gen Bicrobiol 134: 2019–2028

    CAS  Google Scholar 

  • Margulis L, Schwartz KV (1988) Five kingdoms. An illustrated guide to the phyla of life on earth. WH Freeman, New York

    Google Scholar 

  • Merz WG, Burrell RG, Gallegly ME (1969) A serological comparison of six homothallic species of Phytophthora. Phytopathology 59: 367–370

    Google Scholar 

  • Moestrup Ø (1982) Flagellar structure in algae: a review, with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae and Reckertia. Phycologia 21: 427–528

    Google Scholar 

  • Mohan SB (1988) Evaluation of antisera raised against Phytophthora fragariae for detecting the red core disease of strawberries by enzyme-linked immunosorbent assay (ELISA). Plant Pathol 37: 206–216

    Google Scholar 

  • Morris PF, Ward EWB (1992) Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol Mol Plant Pathol 40: 17–22

    CAS  Google Scholar 

  • Petersen FP, Maybroda AM, Grothaus GD, Miller SA (1989) Monoclonal antibodies and methods for fungal pathogen detection. United States Patent no 4,845, 197

    Google Scholar 

  • Prell HH, Karlovsky P, Bahnweg G (1991) Towards transformation in Phytophthora nicotianae. In: Lucas JA, Shattock RC, Shaw DS, Cooke LR (eds) Phytophthora. Cambridge University Press, Cambridge, pp 312–325

    Google Scholar 

  • Pscheidt JW, Burkett JZ, Fisher SL, Hamm PB (1992) Sensitivity and clinical use of Phytophthora-specific immunoassay kits. Plant Dis 76: 928–932

    CAS  Google Scholar 

  • Raven PH, Evert RF, Curtis H (1981) Biology of plants. Worth Publishers, New York

    Google Scholar 

  • Ray PM, Steeves TA, Fultz SA (1983) Botany. WB Saunders, Philadelphia, pp 784

    Google Scholar 

  • Reichle RE (1969) Fine structure of Phytophthora parasitica zoospores. Mycologia 61: 30–51

    Google Scholar 

  • Sachay DJ, Hudspeth DSS, Nadler SA, Hudspeth MES (1993) Oomycete mtDNA: Phytophthora genes for cytochrome c oxidase use an unmodified genetic code and encode proteins most similar to those of plants. Exp Mycol 17: 7–23

    CAS  Google Scholar 

  • Sadowski LA, Powell MJ (1990) Cytochemical detection of polysaccharides in zoospores of Aphanomyces euteiches. Can J Bot 68: 1379–1388

    CAS  Google Scholar 

  • Sansome ER (1987) Fungal chromosomes as observed with the light microscope. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 97–113

    Google Scholar 

  • Smith E, Roberts K, Hutchings A, Galfre G (1984) Monoclonal antibodies to the major structural glycoprotein of the Chlamydomonas cell wall. Planta 161: 330–338

    CAS  Google Scholar 

  • Stamps DJ, Waterhouse GM, Newhook FJ, Hall GS (1990) Revised tabular key to the species of Phytophthora. CAB International, Wallingford

    Google Scholar 

  • Unkles SE, Moon RP, Hawkins AR, Duncan JM, Kinghorn JR (1991) Actin in the oomycetous fungus Phytophthora infestans is the product of several genes. Gene 100: 105–112

    PubMed  CAS  Google Scholar 

  • Villee CA, Solomon EP, Martin CE, Martin DW, Berg LR, Davis PW (1985) Biology. WB Saunders, Fort Worth, pp 1412

    Google Scholar 

  • Vogel HJ (1965) Lysine biosynthesis and evolution. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 25–40

    Google Scholar 

  • Vujicic R, Colhoun J, Chapman JA (1968) Some observations on the zoospores of Phytophthora erythroseptica. Trans Br Mycol Soc 51: 125–127

    Google Scholar 

  • Waterhouse GM, Newhook FJ, Stamps DJ (1983) Present criteria for classification of Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao P (eds) Phytophthora. Its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, MN, pp 139–147

    Google Scholar 

  • Werres S (1988) Enzyme-linked immunosorbent assay (ELISA) as a method for detection of Phytophthora fragariae Hickman in strawberry roots. Nachrichtenbl Deutsch Planzenschutz 40: 146–150

    Google Scholar 

  • White DG (1976) The preparation and use of a fluorescent antibody reagent for the detection of Phythium graminicola. Phytopathology 66: 523–525

    Google Scholar 

  • Wolters J, Erdmann VA (1988) Cladistic analysis of ribosomal RNAs — the phylogeny of eukaryotes with respect to the endosymbiotic theory. BioSystems 21: 209–214

    PubMed  CAS  Google Scholar 

  • Wycoff KL, Ayers AR (1990) Monoclonal antibodies to surface and extracellular antigens of a fungal plant pathogen, Phytophthora megasperma f. sp. glycinea, recognize specific carbohydrate epitopes. Physiol Mol Plant Pathol 37: 55–79

    CAS  Google Scholar 

  • Wycoff KL, Jellison J, Ayers AR (1987) Monoclonal antibodies to glycoprotein antigens of a fungal plant pathogen, Phytophthora megasperma f. sp. glycinea. Plant Physiol 85: 508–515

    PubMed  CAS  Google Scholar 

  • Zentmyer GA (1980) Phytophthora cinnamomi and the diseases it causes. American Phytopathological Society, St. Paul, MN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Hardham, A.R., Cahill, D.M., Cope, M., Gabor, B.K., Gubler, F., Hyde, G.J. (1994). Cell surface antigens of Phytophthora spores: biological and taxonomic characterization. In: Wetherbee, R., Pickett-Heaps, J.D., Andersen, R.A. (eds) The Protistan Cell Surface. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9378-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9378-5_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9380-8

  • Online ISBN: 978-3-7091-9378-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics