Skip to main content

Diagnostic imaging techniques with special reference to PET

  • Conference paper
  • 58 Accesses

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

The late occurrence of gross morphologic changes in Alzheimer’s disease (AD) and the broad overlap of these alterations with those in normal age-matched controls preclude the use of CT and MRI for differential diagnosis of dementia syndromes. Because progressive cell loss and reduced cell and synaptic activity lead to a reduction in metabolism and blood flow, functional imaging techniques visualizing these variables can be helpful in detecting early alterations in AD. Positron emission tomography (PET) is currently the only technology affording three-dimensional measurement of the brain’s energy metabolism which is closely coupled to brain function. Studies of glucose metabolism by PET of (18F)-2-fluoro-2-deoxy-D-glucose are therefore widely applied to show the contribution of various brain structures in the performance of a variety of tasks or their participation in functional deficits associated with various diseases. Although glucose metabolism decreases slightly with age to a regionally different degree, most types of dementia show severe changes in glucose metabolism. Alzheimer’s disease (AD) is characterized by metabolic disturbances most prominent in the parietotemporal association cortex and later in the frontal lobe, whereas primary cortical areas, basal ganglia, thalamus, brainstem, and cerebellum are not affected. It is this typical pattern that distinguishes AD from other dementia syndromes. A ratio calculated from the metabolic rates of glucose of “affected” and “nonaffected” brain regions was able to separate patients with AD from age-matched controls and permitted the discrimination of patients with cognitive impairment of other origin in 85%. The discriminative power can be further improved by activation studies. A continuous visual recognition task increased the metabolic rate in normal subjects by 21% and in patients with AD by 6% on average, with significant regional differences. During activation the significant relation between severity of disease and temporoparietal metabolic rate became even stronger. In the assessment of effects of treatment on disturbed metabolism, PET studies demonstrated an equalization of metabolic heterogeneities in patients responding to a muscarinergic cholinergic agonist, whereas general increases in glucose utilization were observed with piracetam, pyritinol, and phosphatidylserine. The therapeutic relevance of such metabolic effects, however, must be proved in controlled clinical trials. Preliminary results in 4 groups of AD receiving either social support, or cognitive training alone, or cognitive training combined with medical treatment for 6 months suggest that neuropsychological performance and activated glucose metabolism can be improved by therapeutic interventions targeted to special symptoms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alavi A, Fazekas F, Chawluk J, Zimmerman R (1987) Magnetic resonance imaging of the brain in normal aging and dementia. In: Meyer JS, Lechner H, Reivich M, Ott EO (eds) Cerebral vascular disease 6. Excerpta Medica, Amsterdam New York Oxford, pp 191–195.

    Google Scholar 

  • Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxyglucose 18 F scan in Alzheimer’s disease and multiinfarct dementia. Arch Neurol 40:711–714.

    Article  PubMed  CAS  Google Scholar 

  • Chase TN, Fedio P, Foster NL, Brooks R, Di Chiro G, Mansi L (1984) Wechsler adult intelligence scale performance. Cortical localization by fluorodeoxyglucose F-18 positron emission tomography. Arch Neurol 41:1244–1247.

    Article  PubMed  CAS  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464.

    Article  PubMed  CAS  Google Scholar 

  • DeLeon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3:391–394.

    Article  CAS  Google Scholar 

  • Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36:879–887.

    PubMed  CAS  Google Scholar 

  • Evans AC, Beil C, Marrett S, Thompson GJ, Hakim A (1988) Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab 8:513–530.

    Article  PubMed  CAS  Google Scholar 

  • Ferris SH, Reisberg B, Crook T, Friedman E, Schneck K, Mir P, Sherman KA, Corwin J, Gershon S, Bartus RT (1982) Pharmacologic treatment of senile dementia: choline, L-dopa, piracetam, and choline plus piracetam. Aging 19:475–481.

    Google Scholar 

  • Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, DiChiro G (1983) Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology 33:961–965.

    PubMed  CAS  Google Scholar 

  • Foster NL, Chase TN, Patronas NJ, Gillespie MM, Fedio P (1986) Cerebral mapping of apraxia in Alzheimer’s disease by positron emission tomography. Ann Neurol 19:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–788.

    Article  PubMed  CAS  Google Scholar 

  • Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, Ober BA, Huesman RH, Derenzo SE (1983) Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (18F)-fluorodeoxyglucose. J Comput Assist Tomogr 7:590–598.

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackowiak RSJ (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JM, Frackowiak RSJ, Legg NJ (1986) Regional cerebral blood flow and oxygen metabolism in dementia due to vascular disease. Gerontology 32[Suppl 1]:84–88.

    Article  PubMed  Google Scholar 

  • Hachinski VC, Iliff LD, Zilkha E, Duboulay GH, McAllister VL, Marshall J, Ross-Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637.

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL, Duara R, Schlageter N, Berg G, Rapoport SI (1986) Neocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer’s type dementia. Arch Neurol 43:882–885.

    Article  PubMed  CAS  Google Scholar 

  • Hayden MR, Hewitt J, Stoessl AJ, Clark C, Ammann W, Martin WRW (1987) The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology 37:1441–1447.

    PubMed  CAS  Google Scholar 

  • Heiss W-D, Hebold I, Klinkhammer P, Ziffling P, Szelies B, Pawlik G, Herholz K (1988) Effect of piracetam on cerebral glucose metabolism in Alzheimer’s disease as measured by PET. J Cereb Blood Flow Metab 8:613–617.

    Article  PubMed  CAS  Google Scholar 

  • Heiss W-D, Herholz K, Böcher-Schwarz HG, Pawlik G, Wienhard K, Steinbrich W, Friedmann G (1986) PET, CT, and MR imaging in cerebrovascular disease. J Comput Assist Tomogr 10:903–911.

    Article  PubMed  CAS  Google Scholar 

  • Heiss W-D, Herholz K, Pawlik G, Hebold I, Klinkhammer P, Szelies B (1989) Positron emission tomography findings in dementia disorders: contributions to differential diagnosis and objectivizing of therapeutic effects. Keio J Med 38:111–135.

    Article  PubMed  CAS  Google Scholar 

  • Heiss W-D, Kessler J, Slansky I, Mielke R, Szelies B, Herholz K (1993) Longterm metabolic changes in Alzheimer’s disease under various therapeutic interventions. J Cereb Blood Flow Metab 13[Suppl 1]:S5.

    Article  Google Scholar 

  • Heiss W-D, Pawlik G, Herholz K, Göldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4:212–223.

    Article  PubMed  CAS  Google Scholar 

  • Herholz K, Adams R, Kessler J, Szelies B, Grond M, Heiss W-D (1990) Criteria for the diagnosis of Alzheimer’s disease with positron emission tomography. Dementia 1:156–164.

    Google Scholar 

  • Kamo H, McGeer PL, Harrop R, McGeer EG, Calne DB, Martin WRW, Pate BD (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37:439–445.

    PubMed  CAS  Google Scholar 

  • Kessler J, Herholz K, Grond M, Heiss W-D (1991) Impaired metabolic activation in Alzheimer’s disease: a PET study during continous visual recognition. Neuropsychologia 29:229–243.

    Article  PubMed  CAS  Google Scholar 

  • Klinkhammer P, Szelies B, Heiss W-D (1990) Effect of phosphatidylserine on cerebral glucose metabolism in Alzheimer’s disease. Dementia 1:197–201.

    Google Scholar 

  • Kuhl DE, Metter EJ, Benson DF, Ashford JW, Riege WH, Fujikawa DG, Markham CH, Mazziotta JC, et al (1985) Similarities of cerebral glucose metablism in Alzheimer’s and Parkinsonian dementia. J Cereb Blood Flow Metab 5[Supp 11]:S169–S170.

    Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, Hawkins RA, Mazziotta JC, Phelps DE, Kling AS (1983) Local cerebral glucose utilization in elderly patients with depression, multiple infarct dementia, and Alzheimer’s disease. J Cereb Blood Flow Metab 3[Suppl 1]:S494–495.

    Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, Markham CH (1984) Patterns of cerebral glucose utilization in Parkinson’s disease and Huntington’s disease. Ann Neurol 15[Suppl 1]:S119–S125.

    Article  PubMed  Google Scholar 

  • Mazziotta JC, Phelps ME, Pahl JJ, Huang S-C, Baxter LR, Riege WH, et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316:357–362.

    Article  PubMed  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein MF, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34:939–944.

    PubMed  CAS  Google Scholar 

  • Mielke R, Herholz K, Grond M, Kessler J, Heiss W-D (1991) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13:93–98.

    Article  Google Scholar 

  • Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in Parkinsonian patients during life. J Neurol Sci 69:223–230.

    Article  PubMed  CAS  Google Scholar 

  • Pawlik G (1988) Positron emission tomography and multiregional statistical analysis of brain function: from exploratory methods for single cases to inferential tests for multiple group designs. In: Willems JL, van Bemmel JH, Michel J (eds) Progress in computer-assisted function analysis. Elsevier, North-Holland, pp 401–408.

    Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)-2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388.

    Article  PubMed  CAS  Google Scholar 

  • Pietrzyk U, Herholz K, Heiss W-D (1990) Three-dimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 14:51–59.

    Article  PubMed  CAS  Google Scholar 

  • Reisberg B, Ferris SH, DeLeon MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatry 139:1136–1139.

    PubMed  CAS  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137.

    PubMed  CAS  Google Scholar 

  • Riege WH, Metter EJ, Kuhl DE, Lanto AB, Small GW, Fujikawa DG, Mazziotta JC, Dorsey DA, Maltese A (1987) Alzheimer’s disease: cerebral metabolic abnormalities coincide with early memory deficits. Soc Neurosci Abstr 13:1628.

    Google Scholar 

  • Smith RC, Vroulis G, Johnson R, Morgan R (1984) Pharmacologie treatment of Alzheimer’s type dementia: new approaches. Psychopharmacol Bull 20:542–545.

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers M-H, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916.

    Article  PubMed  CAS  Google Scholar 

  • Szelies B, Herholz K, Pawlik G, Beil C, Wienhard K, Heiss W-D (1986) Zerebraler Glukosestoffwechsel bei präseniler Demenz vom Alzheimer-Typ — Verlaufskontrolle unter Therapie mit muskarinergem Cholinagonisten. Fortschr Neurol Psychiatr 54:364–373.

    Article  PubMed  CAS  Google Scholar 

  • Szelies B, Karenberg A (1986) Störungen des Glukosestoffwechsels bei Pick’scher Erkrankung. Fortschr Neurol Psychiatr 54:393–397.

    Article  PubMed  CAS  Google Scholar 

  • Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W-D (1992) Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 16:804–813.

    Article  PubMed  CAS  Google Scholar 

  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss W-D (1985) Estimation of local cerebral utilization by positron emission tomography of (18F)-2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5:115–125.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag/Wien

About this paper

Cite this paper

Heiss, WD. (1994). Diagnostic imaging techniques with special reference to PET. In: Jellinger, K.A., Ladurner, G., Windisch, M. (eds) New Trends in the Diagnosis and Therapy of Alzheimer’s Disease. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9376-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9376-1_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82620-1

  • Online ISBN: 978-3-7091-9376-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics