Advertisement

The Spin-Dependent Structure Function of the Deuteron

  • Stéphane Platchkov
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 7)

Abstract

The SMC collaboration at CERN has recently measured the spin-dependent structure function g d 1 (x) of the deuteron.The data taken cover the kinematical region 1 GeV2 < Q 2 < 30 GeV2 and 0.006 < x < 0.6. The first moment Γ d 1 of g d 1 is found to be two standard deviations below the prediction of the Ellis-Jaffe sum-rule. The inferred quark contribution to the proton spin is ΔΣ = 0.06 ± 0.20 ± 0.15. When combined with the result of EMC for the proton Γ p 1 , the difference Γ p 1 − Γ n 1 = 0.20 ± 0.05 ± 0.04 is deduced, in good agreement with the fundamental Bjorken sum rule. Comparison with other experiments shows that in the region of x where the measurements overlap, the SMC deuteron data agree with the combination of EMC data for the proton and the recent E142 data for the neutron.

Keywords

Structure Function Dynamic Nuclear Polarisation Proton Spin Nucleon Spin Muon Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Sloan, G. Smadga and R. Voss, Physics Reports, 162 (1988) 45.ADSCrossRefGoogle Scholar
  2. [2]
    J. Ashman et al., Phys. Lett. B206 (1988) 1167; J. Ashman et al, Nucl. Phys. B328 (1989) 1Google Scholar
  3. [3]
    M.J. Alguard et al, Phys. Rev. Lett. 37, (1976) 1261; ibid. 41 (1978) 70;ADSCrossRefGoogle Scholar
  4. [4]
    G. Baum et al., Phys. Rev. Lett. 51 (1983) 1135ADSCrossRefGoogle Scholar
  5. [5]
    B. Adeva et al., Phys. Lett. B302 (1993) 533.CrossRefGoogle Scholar
  6. [6]
    P.L. Anthony et al., Phys. Rev. Lett. 71 (1993) 959.ADSCrossRefGoogle Scholar
  7. [7]
    V. W. Hughes and J. Kuti, Ann. Rev. Nucl. Part. Sci. 33 (1983) 611.ADSCrossRefGoogle Scholar
  8. [8]
    E. Leader and E. Predazzi, Gauge theories and the new physics, Cambridge Univ. press, 1985.Google Scholar
  9. [9]
    S. D. Bass and A. W. Thomas, J. Phys. G19 (1993) 925.ADSGoogle Scholar
  10. [10]
    E. Reya, University of Dortmund preprint DO-TH 93 /09 (1993).Google Scholar
  11. [11]
    J. D. Bjorken, Phys. Rev. 148 (1966) 1467; Phys. Rev. D1 (1970) 1376CrossRefGoogle Scholar
  12. [12]
    J. Ellis and R. L. Jaffe, Phys. Rev. D9 (1974) 1444; D10 (1974) 1669.Google Scholar
  13. [13]
    M. Bourquin et al., Z. Phys. C21 (1983) 27.Google Scholar
  14. [14]
    Z. Dziembowski and J. Franklin, J. Phys. G: Nucl. Part. Phys. 17 (1991) 213.ADSCrossRefGoogle Scholar
  15. [15]
    O.C. Allkofer et al., Nucl. Instr. Meth. 179 (1981) 445.CrossRefGoogle Scholar
  16. [16]
    L. Gatignon et al., The muon beam at the SPS, to be published in Nucl. Instr. Meth.Google Scholar
  17. [17]
    P. Amaudruz et al., Nucl. Phys. B371 (1992) 3.ADSCrossRefGoogle Scholar
  18. [18]
    L.W. Whitlow et al., Phys. Lett. B250 (1990) 193.CrossRefGoogle Scholar
  19. [19]
    J. Ellis and M. Karliner, Phys. Lett. B213 (1988) 73.CrossRefGoogle Scholar
  20. [20]
    M. Lacombe et al., Phys. Lett. B101 (1981) 139.CrossRefGoogle Scholar
  21. [21]
    Z. E. Meziani, invited talk at this conference.Google Scholar
  22. [22]
    J. Ellis and M. Karliner, CERN preprint CERN/TH-2052-93.Google Scholar
  23. [23]
    S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B259 (1991) 345.CrossRefGoogle Scholar
  24. [24]
    I. I. Balitsky, V. M. Braun and A. V. Kolesnichenko, Phys. Lett. B242 (1990) 245.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • Stéphane Platchkov
    • 1
  1. 1.DAPNIA/Service de Physique NucléaireCEN SaclayGif sur YvetteFrance

Personalised recommendations