Relativistic Quasipotential Approaches and Electromagnetic Form Factors of the Deuteron

  • Stephen J. Wallace
  • Neal K. Devine
Conference paper
Part of the Few-Body Systems book series (FEWBODY, volume 7)


Quasipotential approaches involve a reduction of four-dimensional dynamics to three dimensions by use of constraints on the relative momenta of particles. They provide covariant forms of dynamics which in principle are equivalent to the four-dimensional dynamics. For each quasipotential reduction it is necessary to define appropriate electromagnetic current operators, which differ from those appropriate to the four-dimensional formalism. Because elastic form factors generally are analyzed in the Breit frame, using wave functions determined in the rest frame of the bound system, it is necessary to have appropriate Lorentz boosts for the three-dimensional dynamics. Several choices for the quasipotential constraint and their implications for electromagnetic scattering from relativistic bound states are reviewed. An ‘instant’formalism is presented which has desirable features, such as a conserved electromagnetic current operator and no singularities in the quasipotential. Calculations for elastic electron scattering from the deuteron demonstrate the significance of the relativistic effects and meson-exchange currents.


Rest Frame Vertex Function Impulse Approximation Magnetic Form Factor Impulse Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mandelstam, S.: Proc. Roy. Soc. London, Ser. A 233, 248 (1955)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Fleischer, J., Tjon, J. A.:Phys. Rev. D 21, 87 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Zuilhof, M. J., Tjon, J. A. Phys. Rev. C 22, 2369 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Zuilhof, M. J., Tjon, J. A. Phys. Rev. C 24, 736 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    Tjon, J. A.: in Hadronic Physics with Multi-GeV Electrons, B. Desplanques and D. Goutte, eds., Nova Science, Commack, New York, 1990Google Scholar
  6. 6.
    Blankenbecler, R., Sugar, R. L.: Phys. Rev. 142, 1051 (1966)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Hummel, E., Tjon, J. A.: Phys. Rev. Lett. 63, 1788 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Hummel, E., Tjon, J. A.: Phys. Rev. C 42, 423 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Gross, F.: Phys. Rev. C 26, 2203 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Gross, F., Van Orden, J. W., Holinde, K: Phys. Rev. C 45, 2094 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Arnold, R. G., Carlson, C. E., Gross, F.: Phys. Rev. C 21, 1426 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Devine, N. K., Wallace, S. J.: Phys. Rev. C 48, 973 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    Salpeter, E. E., Bethe, H. A.: Phys. Rev. 84, 1232 (1951)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Gross, F., Riska, D. O.: Phys. Rev. C 36, 1928 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    Jaus, W.: Hel. Phys. Acta 57, 644 (1984)Google Scholar
  16. 16.
    Devine, N. K.: Ph. D. Thesis, University of Maryland (1992)Google Scholar
  17. 17.
    Hummel, E.: Ph.D. Thesis, University of Utrecht (1991)Google Scholar
  18. 18.
    Wallace, S. J., Mandelzweig, V. B.: Nuc. Phys. A503, 673 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    Mandelzweig, V. B., Wallace, S. J.: Phys. Lett. B197, 469 (1987)CrossRefGoogle Scholar
  20. 20.
    Machleidt, R. A.: in Advances in Nucl. Phys., J. W. Negele, ed., Plenum, New York, 1989Google Scholar
  21. 21.
    Gross, F.: private communicationGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • Stephen J. Wallace
    • 1
  • Neal K. Devine
    • 1
  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations