Advertisement

Hyperspherical Approach to Ultra-Precise Nonvariational Calculations in Few Body Problem

  • V. B. Mandelzweig
Part of the Few-Body Systems book series (FEWBODY, volume 7)

Abstract

The correlation function hyperspherical harmonic method (CFHHM) providing extremely precise direct (nonvariational) solution of the few body Schroedinger equation, is reviewed. Given the proper correlation function chosen from physical considerations, the method generates wave functions accurate in the whole range of interparticle distances that lead, in turn, to precise estimates of the expectation values of the Hamiltonian and other operators.

Keywords

Wave Function Significant Figure Helium Atom Interparticle Distance Body Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Klahn J.D. Morgan, J. Chem. Phys. 81, 410 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    J. Shertzer et. al. Phys. Rev. A39, 3833 (1989); A40, 4777 (1989); A43, 2531 (1991): A45, 4393 (1992); A46, R1155 (1992);Chem.Phys. Lett. 189, 287 (1992).Google Scholar
  3. 3.
    G.L.Payne et. al. Phys. Rev. C22, 823 (1980); W. Gloeckle et. al. Nucl. Phys. A381, 343 (1983); Phys. Rev. C41,2538 (1990);Sasakawa et. al., Phys. Rev. Lett. 53, 1877 (1984); Few Body Syst. 1, 3 (1986); Few Body Syst. 1, 143 (1986); for a recent review see J.L. Friar, Few Body Syst. Suppl. 2, 51 (1987).Google Scholar
  4. 4.
    J.M. Macek, J. Phys. Bl, 831 (1968); J.G. Frey, B.J. Howard, Chem. Phys. 111, 33 (1987); A. Kuppermann and P.G. Hipes, J. Chem. Phys. 84, 5962 (1988); Chem. Phys. Lett. 133, 1 (1987); D.M. Hood and A. Kuppermann, in “Theory of Chemical Reaction Dynamics”, Boston, p. 193, (1986); L. Wolniewiez and J. Hinze, J. Chem. Phys. 85, 2012 (1986); G.A. Parker et al., Chem. Phys. Lett. 137, 564 (1987); J. Chem. Phys. 87, 3888 (1987); J.M. Launay and B. Lepetit, Chem. Phys. Lett. 144, 346 (1988); J. Linderberg and B. Vessal, Int. J. Quantum Chem. 31, 65 (1987).MathSciNetGoogle Scholar
  5. 5.
    D. Ceperley, B. J. Alder, Phys. Rev. 31A, 1999 (1985); S.P. Merkur’ev and S.A. Nemnyugin, Sov. J. Nucl. Phys. 53, 32 (1991).Google Scholar
  6. 6.
    O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967); L.D. Faddeev in “Three Body Problem in Nuclear and Particle Phys.”, J.S.C. McKee and R.M. Rolph eds.(North-Holand, Amsterdam, 1970 ).Google Scholar
  7. 7.
    L.M. Delves, Nucl. Phys. 9, 391 (1959); 20, 275 (1960); F.T. Smith, Phys. Rev. 120, 1058 (1960); J. Math. Phys. 3, 735 (1962); W. Zickendraht, Ann. Phys. 35, 18 (1965); 159, 1448 (1967); A.J. Dragt, J. Math. Phys. 6, 533 (1965); M.A.B. Beg and H. Ruegg, J. Math. Phys. 6, 677 (1965); J.M. Levy-Leblond and M. Levy-Nahas, J. Math. Phys. 6, 1571 (1965); Yu.A. Simonov,Sov. J. Nucl. Phys. 3, 461 (1966); A.M. Badalyan and Yu. A. Simonov, ibid. 3, 755 (1966).Google Scholar
  8. 8.
    V.B. Mandelzweig, Nucl. Phys. A508, 63c (1990).ADSCrossRefGoogle Scholar
  9. 9.
    M.I. Haftel, V.B. Mandelzweig, Phys. Lett. A120, 232 (1987).CrossRefGoogle Scholar
  10. 10.
    M.I. Haftel, V.B. Mandelzweig, Phys. Rev. A38, 5995 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    M.I. Haftel,V.B. Mandelzweig, Ann. of Physics 189, 29 (1989).Google Scholar
  12. 12.
    M.I. Haftel, V.B. Mandelzweig, Phys. Rev. A39, 2813 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    M.I. Haftel,V.B. Mandelzweig, Phys. Rev. A41, 2339 (1990).Google Scholar
  14. 14.
    M.I. Haftel,V.B. Mandelzweig, Phys. Rev. A42, 6324 (1990).Google Scholar
  15. 15.
    R. Krivec, M.I. Haftel, V.B. Mandelzweig, Phys. Rev. A44, 7158 (1991).Google Scholar
  16. 16.
    M.I. Haftel,V.B. Mandelzweig, Phys. Rev. A46, 142 (1992).Google Scholar
  17. 17.
    R. Krivec, M.I.Haftel,V.B.Mandelzweig, Phys. Rev. A46, 6903 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    R. Krivec, M.I. Haftel,V.B. Mandelzweig, Phys. Rev. A47, 911 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    M.I.Haftel,V.B.Mandelzweig, Phys. Rev. A , 1993, submitted for publication.Google Scholar
  20. 20.
    M.I. Haftel,V.B.Mandelzweig, “Ultra-precise Nonvariational Calculation of the Relativistic, Finite Size and QED corrections for the 21S exited state of the Helium atom”, Phys. Rev. A, 1993, submitted for publication.Google Scholar
  21. 21.
    R. Krivec, M.I. Haftel, V.B. Mandelzweig,“Precise Nonvariational Calculation of the mdt Molecular Ion”, Phys. Rev. A , 1993, submitted for publication.Google Scholar
  22. 22.
    V.B. Mandelzweig, Phys. Lett. A78, 25 (1980); M.I.Haftel,V.B.Mandelzweig, Ann. of Physics 150, 48 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    V. A. Fock, Isv. Akad. Nauk. 18, 161 (1954).Google Scholar
  24. 24.
    V.B. Mandelzweig, Phys. Lett. A80, 361 (1980); A82, 471 (1980).MathSciNetGoogle Scholar
  25. 25.
    Nir Barnea, V.B. Mandelzweig, Phys. Rev. A41, 5209 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    Nir Barnea , V.B. Mandelzweig, Phys. Rev. A44, 7053 (1991) .Google Scholar
  27. 27.
    R. Krivec, V.B. Mandelzweig, 1990, Phys. Rev. A42, 3779 (1990).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Accad, C.L. Pekeris B. Schiff, Phys. Rev. A4, 516 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    A.J. Thakkar, V.H. Smith, Phys. Rev. A15, 16 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    G.W.F. Drake, Nucl. Instruments and Methods in Phys. Research B31, 7 (1988).MathSciNetGoogle Scholar
  31. 31.
    A. Kono and S. Hattori, Phys. Rev. A34, 1728 (1986).CrossRefGoogle Scholar
  32. 32.
    K. Frankowsky, Phys. Rev. 160, 1 (1967).ADSCrossRefGoogle Scholar
  33. 33.
    J. Baker, R.N. Hill, J.D. Morgan III, in Proceedings of the AIP Conference “Relativistic,Quantum Electrodynamic,and Weak Interaction Effects in Atoms”,editors W. Johnson,P. Möhr and J. Sucher ,Santa Barbara, 1988,p. l23; J.D. Morgan III (private communication).Google Scholar
  34. 34.
    D.E. Freund, B.D. Huxtable, J.D. Morgan, Phys. Rev. A29, 980 (1984).ADSCrossRefGoogle Scholar
  35. 35.
    T.D. Dinnen et. al., Phys. Rev. Lett. 66, 2859 (1991); W. Lichten et. al., Phys. Rev. A43, 1663 (1991);J. Sansonetti et. al., Phys. Rev. Lett. 65, 2539 (1990).ADSCrossRefGoogle Scholar
  36. 36.
    J.D. Morgan, B.A.P.S. 37, 864 (1992).Google Scholar
  37. 37.
    S.I. Vinitskii et al, Sov. Phys. JETP 52, 353 (1981).ADSGoogle Scholar
  38. 38.
    S. Cohen et al, Phys. Rev. 110 1471 L (1958); W. Kolos et al, Rev. Mod. Phys. 32,178 (1960); A. Froman and J.L. Kinsey, Phys. Rev. 123, 2077 (1961).ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Frolov, V.D. Efros, JETP Lett. 39,544 (1984); A. Yeremin et al, Few Body Systems 4,111 (1988); S.A. Alexander and H.J. Monkhorst, Phys. Rev. A38, 26 (1988); A. Scrinzi, H. J. Monkhorst and S.A. Alexander Phys. Rev. A38, 4859 (1988).ADSGoogle Scholar
  40. 40.
    P. Petelenz, V. H. Smith Phys. Rev. A36, 4078 (1987); A39, 1016 (1989).ADSCrossRefGoogle Scholar
  41. 41.
    Y.K. Ho, J. Phys. B16 (1983).Google Scholar
  42. 42.
    A.K. Bhatia, R.H. Drachman, Phys. Rev. A28, 2523 (1983); A32, 3745 (1985).ADSGoogle Scholar
  43. 43.
    P. Petelenz, V.H. Smith, Phys. Rev. A36, 5125 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    J. Botero, C.H. Greene, Phys. Rev. A32, 1249 (1985).ADSCrossRefGoogle Scholar
  45. 45.
    C.D. Lin, X.H. Liu, Phys. Rev. A37, 2749 (1988).ADSGoogle Scholar
  46. 46.
    C.Y. Hu, A.A. Kvitinsky, S.P. Merkuriev, Phys. Rev. A45, 2723 (1992).ADSCrossRefGoogle Scholar
  47. 47.
    A.M. Frolov, J. Phys. B26, 1031 (1993) .Google Scholar
  48. 48.
    J.H. Bartlett, J.J. Gibson, C.G. Dunn, Phys. Rev. 47, 679 (1935).ADSCrossRefGoogle Scholar
  49. 49.
    G.W.F. Drake, I.B. Khriplovich, A.I. Milstein and A.S. Yelkhovsky, Phys. Rev. A48, R15 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • V. B. Mandelzweig
    • 1
  1. 1.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael

Personalised recommendations