Advertisement

Convolution Approach to The πNN System

  • B. Blankleider
  • A. N. Kvinikhidze
Part of the Few-Body Systems book series (FEWBODY, volume 7)

Abstract

The unitary NN−πNN model contains a serious theoretical flaw: unitarity is obtained at the price of having to use an effective πNN coupling constant that is smaller than the experimental one. This is but one aspect of a more general renormalization problem whose origin lies in the truncation of Hilbert space used to derive the equations. Here we present a new theoretical approach to the πNN problem where unitary equations are obtained without having to truncate Hilbert space. Indeed, the only approximation made is the neglect of connected three-body forces. As all possible dressings of one-particle propagators and vertices are retained in our model, we overcome the renormalization problems inherent in previous πNN theories. The key element of our derivation is the use of convolution integrals that have enabled us to sum all the possible disconnected time-ordered graphs. We also discuss how the convolution method can be extended to sum all the time orderings of a connected graph. This has enabled us to calculate the fully dressed NN one pion exchange potential. We show how such a calculation can be used to estimate the size of the connected three-body forces neglected in the new πNN equations. Early indications are that such forces may be negligible.

Keywords

Green Function Convolution Integral Connected Diagram Nucleon Pole Convolution Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blankleider, B.: Nucl. Phys. A543, 163c (1992)ADSCrossRefGoogle Scholar
  2. [2]
    Avishai, Y., Mizutani, T.: Nucl. Phys. A326, 352 (1979); A338, 377 (1980); A352, 399 (1981); Phys. Rev. C 27, 312 (1983).Google Scholar
  3. [3]
    Rinat, A.S.: Nucl. Phys. A287, 399 (1977).CrossRefGoogle Scholar
  4. [4]
    Thomas, A.W., Rinat, A.S.: Phys. Rev. C 20, 216 (1979).ADSCrossRefGoogle Scholar
  5. [5]
    Afnan, I.R., Blankleider, B.: Phys. Rev. C 22, 1638 (1980).ADSCrossRefGoogle Scholar
  6. [6]
    Afnan, I.R., Blankleider, B.: Phys. Rev. C 32, 2006 (1985).ADSCrossRefGoogle Scholar
  7. [7]
    Kvinikhidze, A.N., Blankleider, B.: Flinders University preprint, FIAS-R-224, September, 1993.Google Scholar
  8. [8]
    Rinat, A.S., Starkand, Y.: Nucl. Phys. A397, 381 (1983); Rinat, A.S., Bhalerao, R.S.: Weizmann Institute of Science Report, WIS-82/55 Nov-Ph, 1982.Google Scholar
  9. [9]
    Lamot, G.H., Perrot, J.L., Fayard, C., Mizutani, T.: Phys. Rev. C 35, 239 (1987).ADSCrossRefGoogle Scholar
  10. [10]
    Fayard, C., Lamot, G.H., Mizutani, T., Saghai, B.: Phys. Rev. C 46, 118 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    Afnan, I.R., McLeod, R.J.: Phys. Rev. C 31, 1821 (1985).ADSCrossRefGoogle Scholar
  12. [12]
    Sauer, P.U., Sawicki, M., Furui, S.: Prog. Theor. Phys. 74, 1290 (1985).ADSCrossRefGoogle Scholar
  13. [13]
    Kvinikhidze, A.N., Blankleider, B.: Phys. Rev. C 48, 25 (1993).ADSCrossRefGoogle Scholar
  14. [14]
    Kvinikhidze, A.N., Blankleider, B.: Phys. Lett. B307, 7 (1993).CrossRefGoogle Scholar
  15. [15]
    Stelbovics, A.T., Stingl, M.: Nucl. Phys. A294, 391 (1978); J. Phys. G 9, 1371 (1978); ibid. 1389.CrossRefGoogle Scholar
  16. [16]
    Jennings, B.K.: Phys. Lett. B205, 187 (1988); Jennings, B.K., Rinat, A.S.: Nucl. Phys. A485, 421 (1988).CrossRefGoogle Scholar
  17. [17]
    Afnan, I.R., Stelbovics, A.T.: Phys. Rev. C 23, 1384 (1981).ADSCrossRefGoogle Scholar
  18. [18]
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields ( McGraw-Hill, New York, 1965 ).MATHGoogle Scholar
  19. [19]
    Logunov, A.A., Tavkhelidze, A.N.: Nuovo Cimento 29, 380 (1963).MathSciNetCrossRefGoogle Scholar
  20. [20]
    Phillips, D.R., Afnan, I.R.: Flinders University preprint, FIAS-R-223, September, 1993.Google Scholar
  21. [21]
    Haberzettl, H., Sandhas, W.: Phys. Rev. C 24, 359 (1981); Fonseca, A.C.: private communication.ADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • B. Blankleider
    • 1
  • A. N. Kvinikhidze
    • 2
  1. 1.School of Physical SciencesFlinders University of South AustraliaAustralia
  2. 2.Mathematical Institute of Georgian Academy of SciencesTbilisiGeorgia

Personalised recommendations