Advertisement

Cross Section and Analyzing Power Ay in the Proton Induced Deuteron Breakup Reaction at 65 MeV

  • M. Allet
  • K. Bodek
  • W. Hajdas
  • J. Lang
  • R. Müller
  • S. Navert
  • O. Naviliat-Cuncic
  • J. Sromicki
  • J. Zejma
  • L. Jarczyk
  • St. Kistryn
  • J. Smyrski
  • A. Strzałkowski
  • W. Glöckle
  • J. Golak
  • H. Witała
  • B. Dechant
  • J. Krug
Part of the Few-Body Systems book series (FEWBODY, volume 7)

Abstract

One of the basic questions in nuclear physics deals with the nature of the two-nucleon (2N) interaction. While QCD can not yet be solved in the nonperturbative regime required for an answer, meson theory has achieved some maturity and provides realistic 2N-forces, which are able to describe very well the great amount of 2N data. It is now of interest to see whether those forces can also be used in systems, where more than two nucleons interact. The simplest one, the three-nucleon system (3N) has always been considered as an ideal testing ground for our understanding of the 2N-interactions. Assuming 2N forces only, the Hamiltonian for the 3N system is fixed. Does it describe the experimental 3N observables? Is it necessary to introduce additionally genuine 3N forces in the dynamics of the 3N system? Now, with the advent of supercomputers, the 3N Faddeev equations can be solved in a numerically rigorous way for any local or nonlocal 2N interaction [1,2]. Therefore, the meson-exchange dynamics in nucleon-nucleon forces can be tested reliably in the 3N system by comparing the calculations with precise experimental data. The aim of the reported experiment is to provide accurate continuum 3N observables in those kinematical regions where, according to model calculations, the 3N force effects are enhanced and, simultaneously, the sensitivity to details of the 2N potential is small [3].

Keywords

Nonperturbative Regime Meson Theory Precise Experimental Data Elastic Scatter Cross Section Polarize Proton Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Glöckle, H. Witala, Th. Cornelius, Nucl. Phys. A508, 115c (1990); J. Styczeri and Z. Stachura (eds.) Proceedings of the 25th Zakopane School on Physics, vol. 2: Selected topics in nuclear structure, World Scientific, Singapore 1990, p. 300ADSCrossRefGoogle Scholar
  2. [2]
    H. Witala, Th. Cornelius, W. Glöckle, Few-Body Systems 3, 123 (1988)ADSCrossRefGoogle Scholar
  3. [3]
    W. Meier, W. Glöckle, Phys. Lett. 128B, 329 (1984)Google Scholar
  4. [4]
    H. Witala, Th. Cornelius and W. Glöckle, Few Body System 5, 89 (1989)ADSCrossRefGoogle Scholar
  5. [5]
    H. Shimizu, K. Imai, N. Tamura, K. Nishimura, K. Hatanaka, T. Saito, Y. Koike, Y. Taniguchi: Nucl. Phys. A382, 242 (1982)CrossRefGoogle Scholar
  6. [6]
    G. Rauprich, S. Lemaitre, P. Niessen, K.R. Nyga, R. Reckenfelderbäumer, L. Sydow, H. Patz gen. Schieck, H. Witala, W. Glöckle, Nucl. Phys. A535, 313 (1991), B. Dechant, Ruhr-Universität Bochum, dissertation, 1992ADSGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • M. Allet
    • 1
  • K. Bodek
    • 1
  • W. Hajdas
    • 1
  • J. Lang
    • 1
  • R. Müller
    • 1
  • S. Navert
    • 1
  • O. Naviliat-Cuncic
    • 1
  • J. Sromicki
    • 1
  • J. Zejma
    • 1
  • L. Jarczyk
    • 2
  • St. Kistryn
    • 2
  • J. Smyrski
    • 2
  • A. Strzałkowski
    • 2
  • W. Glöckle
    • 3
  • J. Golak
    • 3
  • H. Witała
    • 3
  • B. Dechant
    • 4
  • J. Krug
    • 4
  1. 1.Institut für TeilchenphysikEidgenössische Technische HochschuleZürichSwitzerland
  2. 2.Institute of PhysicsJagellonian UniversityCracowPoland
  3. 3.Institut für Theoretische Physik IIRuhr UniversitätBochumGermany
  4. 4.Institut für Experimentalphysik IRuhr UniversitätBochumGermany

Personalised recommendations