Ultrastructural changes in brain parenchyma during normal aging and in animal models of aging

  • C. Struys-Ponsar
  • A. Florence
  • A. Gauthier
  • R. R. Crichton
  • Ph. van den Bosch de Aguilar
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 44)


During aging, the brain parenchyma of animals and humans share many similarities, both in the gray and the white matter. Unfortunately, until now, neither aged animals nor animal models reproduce the two hallmarks of aging of the human brain: senile plaques and tangles. Therefore, observations performed on animals are limited to some aspects of the involutive process which affects brain parenchyma during aging and their appropriateness to the human situation. One striking aspect concerns the occurence of vacuolated necrotic cells whose number increases with advancing age. These cells can constitute markers of the brain involutive process and they characterize, both in animal and human, the more vulnerable areas of the brain affected by the neuronal rarefaction. Experimental animal models can be used to study the various conditions which sustain the cell survival and to determine, at the cellular level, the factors leading the brain parenchyma to an irreversible state of degradation.


Parietal Cortex Brain Parenchyma Ultrastructural Change Senile Plaque Aged Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi U, Cohn J, Buhle L, Gerace L (1986) The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323: 560–564PubMedCrossRefGoogle Scholar
  2. Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. Acta Neuropathol 75: 111–118CrossRefGoogle Scholar
  3. Bons N, Mestre N, Petter A (1991) Senile plaques and neurofibrillary changes in the brain of an aged lemurian primate, Microcebus murinus. Neurobiol Aging 13: 99–105CrossRefGoogle Scholar
  4. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259PubMedCrossRefGoogle Scholar
  5. Brion JP, Couck AM, Flament-Durand J (1982) Intranuclear inclusions in the neurons of senescent rats. Acta Neuropathol 58: 107–110PubMedCrossRefGoogle Scholar
  6. Brion JP, Duyckaerts Ch (1991) Neuropathology. In: Signoret JL, Hauw JJ (eds) Maladie d’Alzheimer et autres démences. Flammarion, Paris, pp 117–138Google Scholar
  7. Bronson RT, Lipman RD, Harrison DE (1993) Age-related gliosis in the white matter of mice. Brain Res 609: 124–128PubMedCrossRefGoogle Scholar
  8. Candy JM, Klinowski J, Perry RH, Perry EK, Fairbairn A, Oakley AE, Carpenter TA, Atack JR, Blessed G, Edwardson JA (1986). Aluminosilicates and senile plaques formation in Alzheimer’s disease. Lancet i: 354–357CrossRefGoogle Scholar
  9. Clauberg M, Joshi JG (1993) Regulation of serine protease activity by aluminium: implications for Alzheimer disease. Proc Natl Acad Sci USA 90: 1009–1012PubMedCrossRefGoogle Scholar
  10. Clemens JA, Stephenson DT (1992) Implants containing β-amyloid protein are not neurotoxic to young and old rat brain. Neurobiol Aging 13: 581–586PubMedCrossRefGoogle Scholar
  11. Coleman PD, Flood DG (1987) Neuron numbers and dendritic extend in normal aging and Alzheimer’s disease. Neurobiol Aging 8: 521–545PubMedCrossRefGoogle Scholar
  12. Cork LC, Powers RE, Selkoe DJ, Davies P, Geyer JJ, Price DL (1988) Neurofibrillary tangles and senile plaques in aged bears. J Neuropathol Exp Neurol 47: 629–641PubMedCrossRefGoogle Scholar
  13. Cotman CW, Pike CJ, Copani A (1992) β-Amyloid neurotoxicity: a discussion of in vitro findings. Neurobiol Aging 13: 587–590PubMedCrossRefGoogle Scholar
  14. D’Haese PC, Van de Vyver FL, de Wolff FA, DeBroe ME (1985) Measurement of aluminium in serum, blood, urine and tissues of chronic hemodialyzed patients by use of electrothermal atomic absorption spectrometry. Clin Chem 31: 24–29PubMedGoogle Scholar
  15. De Estable-Puig RF, Estable-Puig JF (1975) Vacuolar degeneration in aging rats. Virchows Arch 17: 337–346Google Scholar
  16. Emre M, Geula C, Ransil BJ, Mesulam MM (1992) The acute neurotoxicity and effects upon cholinergic axons of intracerebral injected β-amyloid in the rat brain. Neurobiol Aging 13: 553–559PubMedCrossRefGoogle Scholar
  17. Evans PH, Peterhans E, Bürge T, Klinowski J (1992) Aluminosilicate-induced free radical generation by murine brain glial cells in vitro: potential significance in the aetiopathogenesis of Alzheimer’s dementia. Dementia 3: 1–6Google Scholar
  18. Flament-Durand J, Couck AM (1979) Spongiform alterations in brain biopsies of presenile dementia. Acta Neuropathol 46: 159–162PubMedCrossRefGoogle Scholar
  19. Flood DG, Coleman PD (1988) Neuron numbers and size in aging brain: comparisons of human, monkey, and rodent data. Neurobiol Aging 6: 453–463CrossRefGoogle Scholar
  20. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer ß-amyloid cores in rat brain. Proc Natl Acad Sei USA 88: 8362–8366CrossRefGoogle Scholar
  21. Games D, Khan KM, Soriano FG, Keim PS, Davis DL, Bryant K, Lieberburg I (1992) Lack of Alzheimer pathology after ß-amyloid protein injection in rat brain. Neurobiol Aging 13: 569–576PubMedCrossRefGoogle Scholar
  22. Gutteridge JMC, Quinlan GS, Clark IA, Halliwell B (1985) Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochem Biophys Acta 35: 445–447Google Scholar
  23. Haug H, Barmwater U, Eggers R, Fisher D, Kuhel S, Sass NL (1983) Anatomical changes in aging brain: morphometric analysis of the human prosencephalon. In: Cervos-Navarro J, Sarkander HI (eds) Aging, vol 21. Raven Press, New York, pp 1–12Google Scholar
  24. Hoyer S (1988) Glucose and related brain metabolism in dementia of Alzheimer type and its morphological significance. Age 11: 158–166CrossRefGoogle Scholar
  25. Hoyer S, Frölich L, Lauterbach M, van den Bosch de Aguilar Ph (1986) Animal models in dementia research: metabolic changes after intracerebroventricular injections of bromopyruvate, AF 64A, and Alzheimer brain homogenates. In: Modern trends in aging research, vol 147. Colloque INSERM-EURAGE. John Libbey Eurotex, pp 541–549Google Scholar
  26. Kadar T, Silbermann M, Brandeis R, Levy (1990) Age-related structural changes in the rat hippocampus: correlation with working memory deficiency. Brain Res 512: 113–120Google Scholar
  27. Klosen P, van den Bosch de Aguilar Ph (1993) Paired helical filament-like inclusions and Hirano bodies in the mesencephalic nucleus of the trigeminal nerve in the aged rat. Virchows Arch B Cell Pathol 63: 91–97CrossRefGoogle Scholar
  28. Knox CA, Yates RD, Chen II (1980) Brain aging in normotensive and hypertensive strains of rats. II. Ultrastructural changes in neurons and glia. Acta Neuropathol 52: 7–15PubMedCrossRefGoogle Scholar
  29. Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA (1991) An in vivo model for the neurodegenerative effects of β-amyloid and protection by substance P. Proc Natl Acad Sei USA 88: 7247–7251CrossRefGoogle Scholar
  30. Kowall NW, Pendelbury WW, Kessler JB, Perl DP, Beal MF (1989) Aluminium induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal forebrain and upper brainstem. Neuroscience 29: 329–337PubMedCrossRefGoogle Scholar
  31. Lai JCK, Blass JP (1984) Inhibition of brain glycolysis by aluminium. J Neurochem 42: 438–446PubMedCrossRefGoogle Scholar
  32. Lolova I (1991) Qualitative and quantitative glial changes in the hippocampus of aged rats. Anat Anz Jena 172: 263–271Google Scholar
  33. LoPachin RM, Aschner M (1993) Glial-neuronal interactions: relevance to neurotoxic mechanisms. Toxicol Appl Pharmacol 118: 141–158CrossRefGoogle Scholar
  34. Lukiw WJ, Krück TPA, Mac Lachan DR (1989) Linker histone-DNA complexes enhanced in the presence of aluminium lactate and implications for Alzheimer’s disease. FEBS Lett 253: 59–62PubMedCrossRefGoogle Scholar
  35. Martyn CN, Osmond C, Edwardson JA, Barker DJP, Harris EC, Lacey FR (1989) Geographical relation between Alzheimer’s disease and aluminium in drinking water. Lancet i: 59–62Google Scholar
  36. Meiri H, Banin E, Roll M, Rousseau A (1993) Toxic effects of aluminium on nerve cells and synaptic transmission. Prog Neurobiol 40: 89–121PubMedCrossRefGoogle Scholar
  37. Morrisson JH, Hof PR (1992) The organization of the cerebral cortex: from molecules to circuits. Discussions Neurosci IX 2: 79Google Scholar
  38. Nicotera P, Bellomo G, Orrenius S (1990) The role of Ca2+ in cell killing. Chem Res Toxicol 3: 484–494PubMedCrossRefGoogle Scholar
  39. Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 128: 199–202PubMedCrossRefGoogle Scholar
  40. Nitsch R, Mayer G, Hoyer S (1989) The intracerebroventriculary streptozotocin-treated rat: impairment of cerebral glucose metabolism resembles the alterations of carbohydrate metabolism of the brain in Alzheimer’s disease. J Neural Transm 1: 109–110CrossRefGoogle Scholar
  41. Okamoto K, Hirai S, Iizuka T, Yanagisawa T, Watanabe M (1991) Reexamination of granulovacuolar degeneration. Acta Neuropathol 82: 340–345PubMedCrossRefGoogle Scholar
  42. Pellergin-Giampietro DE, Cherici G, Alesiani M, Caria V, Morini F (1988) Excitatory amino acid released from rat hippocampal slices as a consequence of free-radical formation. J Neurochem 51: 1960–1963CrossRefGoogle Scholar
  43. Perl DP, Good PF (1992) Aluminium and the neurofibrillary tangle: results of tissue microprobe studies. In: Aluminium in biology and medicine. Wiley, Chichester, pp 217–236 (Ciba Foundation Symposium 169)Google Scholar
  44. Peters A, Feldman ML, Vaughan DW (1983) The effect of aging on the neuronal population within area 17 of adult rat cerebral cortex. Neurobiol Aging 4: 273–282PubMedCrossRefGoogle Scholar
  45. Ross JR, Morgan DG (1993) The effects of age on glial fibrillary acidic protein RNA induction by fimbria-fornix transection in the mouse brain. Age 16: 15–22CrossRefGoogle Scholar
  46. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease. Science 235: 873–877PubMedCrossRefGoogle Scholar
  47. Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of 0-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3: 275–285PubMedCrossRefGoogle Scholar
  48. Strubble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361: 267–275CrossRefGoogle Scholar
  49. van den Bosch de Aguilar Ph, Goemaere-Vanneste J, Klosen P, Terao E (1992) Ageing changes of spinal ganglion neurons. In: Fujisawa K, Morimatsu J (eds) Development and involution of neurons. Japan Scientific Societies Press, Tokyo, pp 109–150Google Scholar
  50. van den Bosch de Aguilar Ph, Knoops B, Heuschling P, Flament-Durand J, Brion JP, Hoyer S, Frôlich L (1986) Morphological aspects of rat brain after intracerebral administration of Alzheimer brain homogenates. In: Modern trends in aging research, vol 147. Colloque INSERM-EURAGE. John Libbey Eurotext, pp 533–540Google Scholar
  51. van den Bosch de Aguilar Ph, Langendries-Weverberg Ch, Goemaere-Vanneste J, Flament-Durand J, Brion JP, Couck AM (1984) Transplantation of human cortex with Alzheimer’s disease into rat occipital cortex: a model for the study of Alzheimer’s disease. Experientia 40: 402–403PubMedCrossRefGoogle Scholar
  52. Vaughan DW, Peters A (1981) The structure of neuritic plaques in the cerebral cortex of aged rats. J Neuropathol Exp Neurol 40: 472–487PubMedCrossRefGoogle Scholar
  53. Vaughan DW, Vincent JM (1979) Ultrastructure of neurons in the auditory cortex of ageing rats: a morphometric study. J Neurocytol 8: 215–228PubMedCrossRefGoogle Scholar
  54. Wisniewski HM, Ghetti B, Terry RD (1973) Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J Neuropathol Exp Neurol 32: 566–584PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. Struys-Ponsar
    • 1
  • A. Florence
    • 2
  • A. Gauthier
    • 2
  • R. R. Crichton
    • 2
  • Ph. van den Bosch de Aguilar
    • 1
  1. 1.Laboratoire de Biologie cellulaireUniversité Catholique de LouvainLouvain-la-NeuveBelgique
  2. 2.Laboratoire de BiochimieUniversité Catholique de LouvainLouvain-la-NeuveBelgique

Personalised recommendations