Advertisement

The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders

  • S. Diekmann
  • R. Nitsch
  • T. G. Ohm
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 44)

Summary

The entorhinal-hippocampal system is severely altered in many neurodegenerative disorders with mnemonic malfunction, e.g. Alzheimer’s, Parkinson’s and Huntington’s disease. The present approach characterizes an organotypic complex slice culture comprising both the entorhinal cortex and the hippocampal formation in order to establish a tool for experimental studies of the entorhinal-hippocampal interaction and its presumed neurodegenerative alterations in vitro.

Slices were obtained from rats at about postnatal day 15 and maintained in culture using the interface technique. Thus, also structures known to be developed gradually during the first weeks postnatally are in accord to structures seen in adult rats. After two-three weeks in vitro, slices in the culture dish still revealed the typical morphological features of the entorhinal-hippocampal formation as visible with the dissecting microscope. Biocytin, which is taken up by and transported within living cells, labeled typical cell bodies, dendrites and axons of stellate neurons in layer II and pyramidal cells in layer III when applied to the outer layers of the entorhinal cortex. Small injections of biocytin within the dentate gyrus displayed living granule cells and the maintenance of their projection to the pyramidal cells in CA3, i.e., a typical suprapyramidal plexus of mossy fibers. The presence of axons of entorhinal neurons traveling towards the hippocampus and growth cones traversing the deep layers of the entorhinal cortex indicate that both brain regions are still interacting. Immunocytochemistry for calbindin D-28K revealed labeled neurons in layer II of the entorhinal cortex and dentate granule cells which are known to contain this calcium-binding protein.

Keywords

Granule Cell Pyramidal Cell Hippocampal Formation Mossy Fiber Granule Cell Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayer SA (1980) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190: 87–114PubMedCrossRefGoogle Scholar
  2. Bayer BA, Altman J (1987) Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Progr Neurobiol 29: 57–106CrossRefGoogle Scholar
  3. Bachevalier J, Beauregard M (1993) Maturation of medial temporal lobe memory functions in rodents, monkeys, and humans. Hippocampus 3: 191–202 (special issue)PubMedGoogle Scholar
  4. Braak H (1980) Architectonics in the human telencephalic cortex. In: Braitenberg V, Barlow HB, Florey E, Grüsser OJ, van der Loos H (eds) Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 1–147Google Scholar
  5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259PubMedCrossRefGoogle Scholar
  6. Braak H, Braak E (1993) The entorhinal-hippocampal interaction in mnestic disorders. Hippocampus 3: 239–246 (special issue)PubMedCrossRefGoogle Scholar
  7. Cotman CW, Nieto-Sampedro M (1985) Progress in facilitating the recovery of function after central nervous system trauma. Ann N Y Acad Sei 457: 83–92CrossRefGoogle Scholar
  8. Flood DG, Buell SJ, Horwitz GJ, Coleman PD (1987) Dendritic extent in human dentate gyrus in normal aging and senile dementia. Brain Res 402: 205–216PubMedCrossRefGoogle Scholar
  9. Frotscher M (1988) Neuronal elements in the hippocampus and their synaptic connections. In: Frotscher M, Kugler T, Misgeld U, Zilles K (eds) Neurotransmission in the hippocampus. Springer, Berlin Heidelberg New York Tokyo, pp 2–19 (Adv Anat Embryol Cell Biol, vol 11 )CrossRefGoogle Scholar
  10. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Meth 4: 329–342CrossRefGoogle Scholar
  11. Gähwiler BH (1984) Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 40: 235–308PubMedCrossRefGoogle Scholar
  12. Grandes P, Streit P (1991) Effect of perforant path lesion on pattern of glutamate-like immunoreactivity in the rat dentate gyrus. Neuroscience 41: 391–400PubMedCrossRefGoogle Scholar
  13. Heimrich B, Frotscher M (1991) Differentiation of dentate granule cell in slice cultures of rat hippocampus: a Golgi/electron microscopic study. Brain Res 538: 263–268PubMedCrossRefGoogle Scholar
  14. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168–1170PubMedCrossRefGoogle Scholar
  15. Jaffard R, Meunier M (1993) Role of the hippocampal formation in learning and memory. Hippocampus 3: 203–218 (special issue)PubMedGoogle Scholar
  16. Jones RSG, Heinemann U (1988) Synaptic and intrinsic responses of the medial entorhinal cortical cells in normal and magnesium-free medium in vitro. J Neuro- physiol 59: 1476–1497Google Scholar
  17. Li D, Field PM, Starega U, Li Y, Raisman G (1993) Entorhinal axons project to dentate gyrus in organotypic slice co-culture. Neuroscience 52: 799–813PubMedCrossRefGoogle Scholar
  18. Lippa CF, Hamos JE, Pulaski-Salo D, Degenaro LJ, Drachman DA (1992) Alzheimer’s disease and aging: effects on perforant pathway perikarya and synapses. Neurobiol Aging 13: 405–411PubMedCrossRefGoogle Scholar
  19. Lorente de Nö R (1934) Studies on the structure of the cerebral cortex I. The area entorhinalis. J Psychol Neurol 45Google Scholar
  20. Loy R, Lynch G, Cotman CW (1977) Developement of afferent lamination in the fascia dentata of the rat. Brain Res 121: 229–243PubMedCrossRefGoogle Scholar
  21. Lübbers K, Frotscher M (1987) Fine structure and synaptic connections of identified neurons in the rat fascia. Anat Embryol 177: 1–14PubMedCrossRefGoogle Scholar
  22. Masliah E, Mallory M, Hansen L, Alford M, DeTeresa R, Terry R, Baudier J, Saitoh T (1992) Localisation of amyloid precursor protein in GAP 43-immunoreactive abberant sprouting neurites in Alzheimer’s disease. Brain Res 574: 312–316PubMedCrossRefGoogle Scholar
  23. Mattews DA, Cotman CW, Lynch G (1976) An electron microscopic study of lesion induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res 115: 1–21CrossRefGoogle Scholar
  24. Mattson MP, Barger SW (1993) Roles for calcium signaling in structural plasticity and pathology in the hippocampal system. Hippocampus 3: 73–88 (special issue)PubMedGoogle Scholar
  25. Nafstad PHJ (1967) An electron microscope study on the termination of the perforant path fibers in the hippocampus and the fascia dentata. Z Zellforsch 76: 532–542PubMedCrossRefGoogle Scholar
  26. Nitsch R, Soriano E, Frotscher M (1990) The parvalbumin-containing nonpyramidal neurons in the rat hippocampus. Anat Embryol 181: 413–425PubMedCrossRefGoogle Scholar
  27. Nitsch R, Frotscher M (1991) Maintenance of peripheral dendrites of GABAergic neurons requires specific input. Brain Res 554: 304–307PubMedCrossRefGoogle Scholar
  28. Nitsch R, Frotscher M (1992) Reduction of posttraumatic transneuronal “early gene” activation and dendritic atrophy by the NMD A receptor antagonist MK-801. Proc Natl Acad Sei USA 89: 5197–5200CrossRefGoogle Scholar
  29. Nitsch R, Clussmann H, Heinemann U (1992) A current source density analysis of stimulus induced field potentials in the rat dentate gyrus following entorhinal lesions. Soc Neurosci Abstr 18: 321Google Scholar
  30. Nitsch R (1993) Transneuronal changes in the lesioned entorhinal-hippocampal system. Hippocampus 3: 247–256 (special issue)PubMedCrossRefGoogle Scholar
  31. Ohm TG (1993) Alterations of signal transduction in the lesioned entorhinal hippocampal system. Hippocampus 3: 131–138 (special issue)PubMedGoogle Scholar
  32. Ohm TG, Schmitt M, Lemmer B, Bohl J (1992) Significant decrease in adenylate cyclase activity precedes the full development of Alzheimer-related neurofibrillary changes. Soc Neurosci Abstr 18 /1: 205Google Scholar
  33. Ohm TG, v Dewitz G, Witte K, Nitsch R, Lemmer B (1993) Hippocampal adenylate cyclase activity after unilateral electrolytic lesion of the entorhinal cortex in young adult rats. Abstr, 16th Annual Meeting of the European Neuroscience Association, Madrid. Eur J Neurosci [Suppl] 6: 235Google Scholar
  34. Reeves TM, Steward O (1988) Changes in the firing properties of neurons in the dentate gyrus with denervation and reinnervation: implications for behavioral recovery. Exp Neurol 102: 37–49PubMedCrossRefGoogle Scholar
  35. Rose G, Lynch G, Cotman CW (1976) Hypertrophy and redistribution of astrocytes in the deafferentiated dentate gyrus. Brain Res Bull 1: 87–92PubMedCrossRefGoogle Scholar
  36. Sautiere PE, Sindou P, Couratier P, Hugon J, Wattez A, Delacourte A (1992) Tau antigenic changes induced by glutamate in the rat primary culture model: a biochemical approach. Neurosci Lett 140: 206–210PubMedCrossRefGoogle Scholar
  37. Seto-Ohshima A, Aoki E, Semba R, Emson PC, Heizmann CW (1990) Appearence of parvalbumin-specific immunoreactivity in the cerebral cortex and hippocampus of the developing rat and gerbil brain. Histochemistry 94: 579–589PubMedCrossRefGoogle Scholar
  38. Sloviter RS (1989) Calcium-binding protein (calbindin D28k) and parvalbumin immu- nocytochemistry: localisation in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280: 183–196PubMedCrossRefGoogle Scholar
  39. Steward O (1976) Topographic organisation of the entorhinal area to the hippocampal formation. J Comp Neurol 167: 285–314PubMedCrossRefGoogle Scholar
  40. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Meth 37: 173–182CrossRefGoogle Scholar
  41. Storm-Mathisen J, Ottersen OP (1984) Neurotransmitters in the hippocampal formation. In: Reinoso-Suarez F, Afmone-Marsan C (eds) Cortical integration. Raven Press, New York, pp 105–130Google Scholar
  42. West JR, Deadwyler S, Cotman CW, Lynch G (1975) Time-dependent changes in commisural field potentials in the dentate gyrus following lesions of the entorhinal cortex in adult rats. Brain Res 97: 215–233PubMedCrossRefGoogle Scholar
  43. Witter MP, Amaral DG, Van Hoesen GW (1989) The entorhinal-dentate projection in the macaque monkey: topographical organisation along the longitudinal axis of the hippocampus. J Neurosci 9: 216–228PubMedGoogle Scholar
  44. Witter MP (1993) Organisation of the entorhinal-hippocampal system: a review of the current anatomical data. Hippocampus 3: 33–44 (special issue)PubMedGoogle Scholar
  45. Zhang P, Hirsch EC, Damier P, Duckaerts C, Javoy-Agid F (1992) c-fos protein-like immunoreactivity: distribution in the human brain and over-expression in the hippocampus of patients with Alzheimer’s disease. Neuroscience 46: 9–21PubMedCrossRefGoogle Scholar
  46. Zipp F, Nitsch R, Soriano E, Frotscher M (1989) Entorhinal fibers form synaptic contacts on parvalbumin — immunoreactive neurons in the rat fascia dentata. Brain Res 495: 161–166PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • S. Diekmann
    • 1
  • R. Nitsch
    • 1
  • T. G. Ohm
    • 1
  1. 1.Zentrum der MorphologieJohann Wolfgang-Goethe-UniversitätFrankfurt am MainFederal Republic of Germany

Personalised recommendations