AF64A-induced brain damage and its relation to dementia

  • H. Hörtnagl
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 44)


Several data obtained in the AF64A-model are of particular relevance for our understanding of the pathogenesis and progression of Alzheimer’s disease. The AF64A-induced withdrawal of cholinergic function in the rat hippocampus was associated with reversible functional changes in other neurotransmitters, including noradrenaline, serotonin, somatostatin and glutamate, thereby mimicking changes in Alzheimer’s disease. Identical changes in markers for synaptic vesicles were found in Alzheimer’s disease and AF64A-model. A study on the role of gender revealed a higher susceptibility to the neurotoxic action of AF64A in female rats. The cholinergic deficit was also responsible for a disinhibition of the negative feedback regulation of glucocorticoids. Increased exposure to glucocorticoids, however, enhanced the vulnerability of hippocampal cholinergic neurons to AF64A. These data indicate that the AF64A-induced cholinergic deficit in the rat brain represents a reliable tool to study several mechanisms possibly involved in Alzheimer’s disease.


Senile Dementia Cholinergic Function ChAT Activity Cholinergic Deficit Choline Acetyltransferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen SJ, Dawbarn D, Wilcock GK (1988) Morphometric immunochemical analysis of neurons in the nucleus basalis of Meynert in Alzheimer’s disease. Brain Res 454: 275–281PubMedCrossRefGoogle Scholar
  2. Arai H, Kosaka K, Jizuka R (1984) Changes of biogenic amines and their metabolites in post mortem brains from patients with Alzheimer’s type dementia. J Neurochem 43: 388–393PubMedCrossRefGoogle Scholar
  3. Beal MF, Mazurek MF, Svendsen CN, Bird ED, Martin JB (1986) Widespread reduction of somatostatin-like immunoreactivity in the cerebral cortex in Alzheimer’s disease. Ann Neurol 20: 489–495PubMedCrossRefGoogle Scholar
  4. Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496PubMedCrossRefGoogle Scholar
  5. Brion J-P, Couck A-M, Bruce M, Anderton B, Flament-Durand J (1991) Synaptophysin and chromogranin A immunoreactivities in senile plaques of Alzheimer’s disease. Brain Res 539: 143–150PubMedCrossRefGoogle Scholar
  6. Burke WJ, Chung HD, Huang JS, Huang SS, Haring JH, Strong R, Marshall GL, Joh TH (1988) Evidence for retrograde degeneration of epinephrine neurons in Alzheimer’s disease. Ann Neurol 24: 532–536PubMedCrossRefGoogle Scholar
  7. Candy JM, Klinowski J, Perry RH, Perry EK, Fairbairn A, Oakley AE, Carpenter TA, Atack JR, Blessed G, Edwardson JA (1986) Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet i: 354–357CrossRefGoogle Scholar
  8. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190PubMedCrossRefGoogle Scholar
  9. Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, Perry RH, Blessed G, Tomlinson BE (1983) Monoamine metabolism in senile dementia of Alzheimer type. J Neurol Sci 60: 383–392PubMedCrossRefGoogle Scholar
  10. Davies P, Katzman R, Terry RD (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementia. Nature 288: 279–280PubMedCrossRefGoogle Scholar
  11. Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet ii: 11–14Google Scholar
  12. DeLeon MJ, McRae T, Tsai JR, George AE, Maraus DL, Freedman M, Wolf AP, McEwen B (1988) Abnormal Cortisol response in Alzheimer’s disease linked to hippocampal atrophy. Lancet ii: 391–392Google Scholar
  13. Eva C, Fabrazzo M, Costa E (1987) Changes of cholinergic, noradrenergic and serotonergic synaptic transmission indices elicited by ethylcholine aziridinium ion (AF64A) infused intraventricularly. J Pharmacol Exp Ther 241: 181–186PubMedGoogle Scholar
  14. Feldman S, Confronti N (1980) Participation of the dorsal hippocampus in the glucocorticoid feedback effect on adrenocortical activity. Neuroendocrinology 30: 52–61PubMedCrossRefGoogle Scholar
  15. Fendler K, Karmos G, Telegdy G (1961) The effect of hippocampal lesion on pituitary adrenal function. Acta Physiol (Budapest) 20: 283–297Google Scholar
  16. Fisher A, Mantione CR, Abraham DJ, Hanin I (1982) Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. J Pharmacol Exp Ther 222: 140–145PubMedGoogle Scholar
  17. Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, Neary D, Snowden JS, Wilcock GK (1985) Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment. N Engl J Med 313: 7–11PubMedCrossRefGoogle Scholar
  18. Gottfries CG (1985) Alzheimer’s disease and senile dementia: biochemical characteristics and aspects of treatment. Psychopharmacology 86: 245–252PubMedCrossRefGoogle Scholar
  19. Greenwald B, Mathe A, Mohs R, Levy M, Johns C, Davis K (1986) Cortisol in Alzheimer’s disease. II. Dexamethasone suppression, dementia severity and affective symptoms. Am J Psychiatry 143: 442–449PubMedGoogle Scholar
  20. Hanin I, Fisher A, Hörtnagl H, Leventer SM, Potter PE, Walsh TJ (1987) Ethylcholine aziridinium (AF64A; ECMA) and other potential cholinergic neuron-specific neurotoxins. In: Meitzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 341–349Google Scholar
  21. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12: 383–388PubMedCrossRefGoogle Scholar
  22. Herman JP, Cullinan WE, Young EA, Akil H, Watson SJ (1992) Selective forebrain fiber tract lesions implicate ventral hippocampal structures in tonic regulation of paraventricular nucleus corticotropin-releasing hormone (CRH) and arginine vasopressin ( AVP) mRNA expression. Brain Res 592: 228–238PubMedCrossRefGoogle Scholar
  23. Herman JP, Schäfer MK-H, Young EA, Thompson R, Douglass J, Akil H, Watson SJ (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary adrenocortical axis. J Neurosci 9: 3072–3082PubMedGoogle Scholar
  24. Hörtnagl H, Berger ML, Hornykiewicz O (1991) Cholinergic deficit induced by ethylcholine aziridinium (AF64A) in rat hippocampus: effect on glutamatergic systems. Naunyn Schmiedebergs Arch Pharmacol 344: 213–219PubMedCrossRefGoogle Scholar
  25. Hörtnagl H, Berger ML, Hornykiewicz O (1993a) Role of glucocorticoids in the cholinergic degeneration in rat hippocampus induced by ethylcholine aziridinium (AF64A). J Neurosci 13: 2939–2945PubMedGoogle Scholar
  26. Hörtnagl H, Hanin I (1992) Toxins affecting the cholinergic system. In: Herken H, Hucho F (eds) Selective neurotoxicity. Springer, Berlin Heidelberg New York Tokyo, pp 293–332 (Handbook of experimental pharmacology, vol 102 )Google Scholar
  27. Hörtnagl H, Hansen L, Kindel G, Schneider B, El Tamer A, Hanin I (1993b) Sex differences and estrous cycle-variations in the AF64A–induced cholinergic deficit in the rat hippocampus. Brain Res Bull 31: 129–134PubMedCrossRefGoogle Scholar
  28. Hörtnagl H, Potter PE, Hanin I (1987a) Effect of cholinergic deficit induced by ethylcholine aziridinium on serotonergic parameters in rat brain. Neuroscience 22: 203–213PubMedCrossRefGoogle Scholar
  29. Hörtnagl H, Potter PE, Hanin I (1987b) Effect of cholinergic deficit induced by ethylcholine aziridinium (AF64A) on noradrenergic and dopaminergic parameters in rat brain. Brain Res 421: 75–84PubMedCrossRefGoogle Scholar
  30. Hörtnagl H, Potter PE, Singer EA, Kindel G, Hanin I (1989) Clonidine prevents transient loss of noradrenaline in response to cholinergic hypofunction induced by ethylcholine aziridinium (AF64A). J Neurochem 52: 853–858PubMedCrossRefGoogle Scholar
  31. Hörtnagl H, Sperk G, Sobal G, Maas D (1990) Cholinergic deficit induced by ethylcholine aziridinium (AF64A) transiently affects somatostatin and neuropeptide Y levels in rat brain. J Neurochem 54: 1608–1613PubMedCrossRefGoogle Scholar
  32. Jossan SS, Hiraga Y, Oreland L (1989) The cholinergic neurotoxin ethylcholine mustard aziridinium (AF64A) induces an increase in MAO–B activity in the rat brain. Brain Res 476: 291–297PubMedCrossRefGoogle Scholar
  33. Katzman R (1986) Alzheimer’s disease. N Engl J Med 314: 964–972PubMedCrossRefGoogle Scholar
  34. Kaufmann H, Vadasz C, Lajtha A (1983) Effect of estradiol on choline acetyltransferase activity in various brain regions. Brain Res 453: 389–392CrossRefGoogle Scholar
  35. Knigge KM (1961) Adrenocortical response to stress in rats with lesions of hippocampus and amygdala. Proc Soc Exp Biol 108: 67–69Google Scholar
  36. Laganiere S, Marinko M, Corey J, Wülfert E, Hanin I (1990) Sector-dependent neurotoxicity of ethylcholine aziridinium (AF64A) in the rat hippocampus. Neuropharmacology 29: 961–964PubMedCrossRefGoogle Scholar
  37. Lassmann H, Weiler R, Fischer P, Bancher C, Jellinger K, Floor E, Danielczyk W, Seitelberger F, Winkler H (1992) Synaptic pathology in Alzheimer’s disease: immunological large densecore vesicles. Neuroscience 46: 1–8PubMedCrossRefGoogle Scholar
  38. Leventer SM, Wülfert E, Hanin I (1987) Time course of ethylcholine aziridinium ion (AF64A)-induced cholinotoxicity in vivo. Neuropharmacology 26: 361–365PubMedCrossRefGoogle Scholar
  39. Lowe SL, Bowen DM, Francis PT, Neary D (1990) Antemortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease. Neuroscience 38: 571–577PubMedCrossRefGoogle Scholar
  40. Luine VN (1984) Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 89: 484–490CrossRefGoogle Scholar
  41. Magarinos AM, Somoza G, DeNicola AF (1987) Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm Metabol Res 19: 105–109CrossRefGoogle Scholar
  42. Mahata M, Hörtnagl H, Mahata SK, Fischer-Colbrie R, Winkler H (1993) Messenger RNA levels of chromogranin B, secretogranin II and VGF in rat brain after AF64A-induced septo-hippocampal cholinergic lesions. J Neurochem 61: 1648–1656PubMedCrossRefGoogle Scholar
  43. Matha SK, Mahata M, Marksteiner J, Sperk G, Fischer-Colbrie R, Winkler H (1991) Distribution of RNA for chromogranin A and B and secretogranin II in rat brain. Eur J Neurosci 3: 895–904CrossRefGoogle Scholar
  44. Mahata SK, Mahata M, Steiner H-J, Fischer-Colbrie R, Winkler H (1992a) In situ hybridization: mRNA levels of secretogranin II, neuropeptides and carboxypeptidase H in brains of salt-loaded and Brattleboro rats. Neuroscience 48: 669–680PubMedCrossRefGoogle Scholar
  45. Mahata SK, Marksteiner J, Sperk G, Mahata M, Gruber B, Fischer-Colbrie R, Winkler H (1992b) Temporal lobe epilepsy of the rat: differential expression of RNA for chromogranin B, secretogranin II, synaptin/synaptophysin and p65 in subfields of the hippocampus. Mol Brain Res 16: 1–12PubMedCrossRefGoogle Scholar
  46. Maragos WF, Greenamyre JT, Penney JB, Young AB (1987) Glutamate dysfunction in Alzheimer’s disease: a hypothesis. Trends Neurosci 10: 65–68CrossRefGoogle Scholar
  47. Munoz DG (1989) Chromogranin A immunoreactive peptides are major components of neocortical and limbic plaques in Alzheimer’s disease. J Neuropathol Exp Neurol 48: 378 (abstract)CrossRefGoogle Scholar
  48. Murphy M (1992) The molecular pathogenesis of Alzheimer’s disease: clinical prospects. Lancet 340: 1512–1515PubMedCrossRefGoogle Scholar
  49. Muth EA, Crowley WR, Jacobowitz DM (1980) Effect of gonadal hormones on luteinizing hormone in plasma and on choline acetyltransferase activity and acetylcholine levels in discrete nuclei of rat brain. Neuroendocrinology 30: 329–336PubMedCrossRefGoogle Scholar
  50. Perl DP, Brody AR (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science 208: 297–298PubMedCrossRefGoogle Scholar
  51. Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J 2: 1457–1459PubMedCrossRefGoogle Scholar
  52. Potter PE, Härsing LG Jr, Kakucska I, Gaäl G, Vizi ES (1986) Selective impairment of acetylcholine release and content in the central nervous system following intracere- broventricular administration of ethylcholine mustard aziridinium ion (AF64A) in the rat. Neurochem Int 8: 199–206PubMedCrossRefGoogle Scholar
  53. Ransmayr G, Cervera P, Hirsch EC, Berger W, Fischer W, Agid Y (1992) Alzheimer’s disease: is the decrease of the cholinergic innervation of the hippocampus related to intrinsic hippocampal pathology? Neuroscience 47: 843–851PubMedCrossRefGoogle Scholar
  54. Reinikainen KJ, Paljärvil L, Halonen T, Malminen O, Kosma V-M, Laakso M, Riekkinen PJ (1988) Dopaminergic system and monoamine oxidase B activity in Alzheimer’s disease. Neurobiol Aging 9: 245–252PubMedCrossRefGoogle Scholar
  55. Reinikainen KJ, Soininen H, Riekkinen PJ (1990) Neurotransmitter changes in Alzheimer’s disease: implications to diagnostics and therapy. J Neurosci Res 27: 576–586PubMedCrossRefGoogle Scholar
  56. Rocca WA, Amaducci LA, Schoenberg BS (1986) Epidemiology of clinically diagnosed Alzheimer’s disease. Ann Neurol 19: 415–424PubMedCrossRefGoogle Scholar
  57. Ruberg M, Mayo W, Brice A, Duyckaerts C, Hauw JJ, Simon H, LeMoal M, Agid Y (1990) Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer’s disease, Parkinson’s disease and rats with basal forebrain lesions. Neuroscience 35: 327–333PubMedCrossRefGoogle Scholar
  58. Sapolsky RM (1987) Glucocorticoids and hippocampal damage. Trends Neurosci 10: 346–349CrossRefGoogle Scholar
  59. Sapolsky RM, Armanini MP, Sutton SW, Plotsky PM (1989) Elevation of hypophysial portal concentrations of adrenocorticotropin secretagogues after fornix transection. Endocrinology 125: 2881–2887PubMedCrossRefGoogle Scholar
  60. Sapolsky RM, Zola-Morgan S, Squire LR (1991) Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. J Neurosci 11: 3695–3704PubMedGoogle Scholar
  61. Schoenberg BS (1986) Epidemiology of Alzheimer’s disease and other dementing illnesses. J Chron Dis 39: 1095–1104PubMedCrossRefGoogle Scholar
  62. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498PubMedCrossRefGoogle Scholar
  63. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and Cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32: 756–765PubMedCrossRefGoogle Scholar
  64. Suemaru S, Hashimoto K, Suemaru K, Maeba Y, Matsushita N, Zensuke O (1991) Hyperkinesia, plasma corticotropin releasing hormone and ACTH in senile dementia. Neuro-Report 2: 337–340Google Scholar
  65. Szerdahelyi P, Käsa P (1988) Intraventricular administration of the cholinotoxin AF64A increases the accumulation of aluminum in rat parietal cortex and hippocampus, but not in the frontal cortex. Brain Res 444: 356–360PubMedCrossRefGoogle Scholar
  66. Tucek S (1985) Regulation of acetylcholine synthesis in the brain. J Neurochem 44: 11–24PubMedCrossRefGoogle Scholar
  67. Turner BB, Weaver D (1985) Sexual dimorphism of glucocorticoid binding in rat brain. Brain Res 343: 16–23PubMedCrossRefGoogle Scholar
  68. Walsh TJ, Tilson HA, DeHaven DL, Mailman RB, Fisher A, Hanin I (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex and produces long-term passive avoidance and radial-arm maze deficits in the rat. Brain Res 321: 91–102PubMedCrossRefGoogle Scholar
  69. Weiler R, Lassmann H, Fischer P, Jellinger K, Winkler H (1990) A high ratio of chromogranin A to synaptin/synaptophysin is a common feature of brains in Alzheimer and Pick disease. Fed Eur Biochem Soc Lett 263: 337–339CrossRefGoogle Scholar
  70. Zhang M, Katzman R, Salmon D, Jin H, Cai G, Wang Z, Qu G, Grant I, Yu E, Levy P, Klauber MR, Liu WT (1990) The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender and education. Ann Neurol 27: 428–439PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. Hörtnagl
    • 1
  1. 1.Institute of Biochemical PharmacologyUniversity of ViennaWienAustria

Personalised recommendations