An aspect of Alzheimer neuropathology after suicide transport damage

  • I. P. Chessell
  • P. T. Francis
  • M-T. Webster
  • A. W. Procter
  • P. R. Heath
  • R. C. A. Pearson
  • D. M. Bowen
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 44)


Concentrations of APP-like immunereactivity have been determined by western blotting in a soluble fraction and two membrane fractions of brain cortex from demented patients (14 with Alzheimer’s disease and 8 with other diagnoses). The concentration of APP in the soluble fraction correlated with the number of pyramidal neurones but not astrocytes or indices of interneurones. Experimental lesions in rats and quantitative autoradiography were used to investigate the cellular localisation of receptors. Lesions were produced by intrastriatal or intracortical injections of volkensin to destroy corticofugal and corticortical pyramidal neurones respectively. Volkensin treatment caused significant loss of pyramidal neurones which was accompanied by reduced binding to muscarinic cholinergic m1 receptors. [3H] 8-OH-DPAT (serotonin 1A receptors) binding was reduced only following intrastriatal volkensin. Results from the human and rat investigations are discussed in terms of the biology of cortical pyramidal neurones and drugs for the treatment of Alzheimer’s disease.


Pyramidal Neurone Amyloid Precursor Protein Cortical Pyramidal Neurone Cortical Pyramidal Cell Senile Plaque Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arai H, Lee VM-Y, Messinger ML, Greenberg BD, Lowery DE, Trojanowski JQ (1991) Expression patterns of ß-amyloid precursor protein (ß-APP) in neural and nonneural human tissues from Alzheimer’s disease and control subjects. Ann Neurol 30: 686–693PubMedCrossRefGoogle Scholar
  2. Bahmanyar S, Higgins GA, Goldgaber D, Lewis DA, Morrison JH, Wilson MC, Shankar SK, Gajdusek DC (1987) Localization of amyloid (3 protein messenger RNA in brains from patients with Alzheimer’s disease. Science 237: 77–80PubMedCrossRefGoogle Scholar
  3. Blier P, Lista A, Montigny CD (1992) Differential properties of pre-and postsynaptic 5- Hydroxytryptamine1A receptors in the dorsal raphe and hippocampus. II. Effect of pertussis and cholera toxins. J Pharmacol Exp Ther 265: 16–23Google Scholar
  4. Bowen DM (1990) Treatment of Alzheimer’s disease: molecular pathology versus neurotransmitter-based therapy. Br J Psychiatry 157: 327–330PubMedCrossRefGoogle Scholar
  5. Buckley NJ, Burnstock G (1986) Autoradiographic localisation of peripheral Ml muscarinic receptors using 3H pirenzepine. Brain Res 375: 83–91PubMedCrossRefGoogle Scholar
  6. Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski P, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor. Proc Natl Acad Sci USA 89: 10075–10078PubMedCrossRefGoogle Scholar
  7. Chessell IP, Francis PT, Pangalos MN, Pearson RCA, Bowen DM (1993) Localisation of muscarinic (m1) and other neurotransmitter receptors on corticofugal-projecting pyramidal neurones. Brain Res 632: 86–94PubMedCrossRefGoogle Scholar
  8. Clarke NA, Webster M-T, Francis PT, Procter AW, Hodgkiss AD, Bowen DM (1993) β-Amyloid precursor protein-like immunoreactivity can be altered in humans by drugs affecting neurotransmitter function. Neurodegeneration 2: 243–248Google Scholar
  9. Coggeshall RE (1992) A consideration of neural counting methods. Trends Neurosci 15: 9–13PubMedCrossRefGoogle Scholar
  10. Court JA, Perry EK (1991) Dementia: the neurochemical basis of putative transmitter orientated therapy. Pharmacol Ther 52: 423–443PubMedCrossRefGoogle Scholar
  11. Davis KL, Thai LJ, Gamzu ER, Davis CS, Woolson RF, Gracon SI, Drachman DA, Schneider LS, Whitehouse PJ, Hoover TM, Morris JC, Kawas CH, Knopman DS, Earl NL, Kumar V, Doody RS (1992) A doule-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. N Engl J Med 327: 1253–1259PubMedCrossRefGoogle Scholar
  12. Francis PT, Pangalos MN, Pearson RCA, Middlemiss DN, Stratmann GC, Bowen DM (1992) 5-HT1A but not 5-HT2 receptors are enriched on neocortical pyramidal neurones destroyed by intrastriatal volkensin. J Pharmacol Exp Ther 261: 1273–1281PubMedGoogle Scholar
  13. Francis PT, Cross AJ, Bowen DM (1994) Neurotransmitters and neuropeptides. In: Terry RD, Katzman R, Bick K (eds) Alzheimer disease. Raven Press, New York, pp 247–262Google Scholar
  14. Francis PT, Sims NR, Procter AW, Bowen DM (1993b) Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer’s disease: investigative and therapeutic perspectives. J Neurochem 60: 1589–1604PubMedCrossRefGoogle Scholar
  15. Francis PT, Webster M-T, Procter AW, Clarke NA, Bowen DM, Doshi R, Mann DMA, Neary D (1993c) Soluble β-amyloid precursor protein and pyramidal neurone loss. Lancet 341: 431PubMedCrossRefGoogle Scholar
  16. Haass C, Hung AY, Selkoe DJ (1991) Processing of β-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 11: 3783–3793PubMedGoogle Scholar
  17. Harrison PJ, Barton AJL, Procter AW, Bowen DM, Pearson RCA (1994) The effects of Alzheimer’s disease, other dementias and premortem course upon amyloid p precursor protein messenger RNA in frontal cortex. J Neurochem 62: 635–644PubMedCrossRefGoogle Scholar
  18. Holmes C, Webster M-T, Procter AW, Francis PT, Bowen DM (1993) Relationship between P-amyloid precursor protein, pyramidal neurones and astrocytes in human neocortex. Biochem Soc Trans 21: 238SGoogle Scholar
  19. Hule EC, Birdsall NJM, Buckley NJ (1990) Muscarinic receptor subtypes. Ann Rev Pharmacol Toxicol 30: 633–673CrossRefGoogle Scholar
  20. McCormick DA, Williamson A (1989) Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 86: 8098–8102PubMedCrossRefGoogle Scholar
  21. McLaughlin M, Ross BM, Milligan G, McCulloch J, Knowler JT (1991) Robustness of G proteins in Alzheimer’s disease: an immunoblot study. J Neurochem 57: 9–14PubMedCrossRefGoogle Scholar
  22. Neary D, Snowden JS, Mann DM, Bowen DM, Sims NR, Northen B, Yates PO, Davison AN (1986) Alzheimer’s disease: a correlative study. J Neurol Neurosurg Psychiatry 49: 229–237PubMedCrossRefGoogle Scholar
  23. Nishimoto I, Okamoto T, Matsuura Y, Takahashi S, Okamoto TO, Murayama Y, Ogata E (1993) Alzheimer amyloid protein precusor complexes with brain GTP- binding protein G0. Nature 362: 75–79PubMedCrossRefGoogle Scholar
  24. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307PubMedCrossRefGoogle Scholar
  25. Nitsch RM, Farber SA, Growdon JH, Wurtman RJ (1993) Release of amyloid (3- protein precursor derivatives by electrical depolarization of rat hippocampal slices. Proc Natl Acad Sci USA 90: 5191–5193PubMedCrossRefGoogle Scholar
  26. O’Neill C, Cowburn RF, Wiehager B, Alafuzoff I, Winblad B, Fowler CJ (1991) Preservation of 5-hydroxytryptamine1A receptor-G protein interactions in the cerebral cortex of patients with Alzheimer’s disease. Neurosci Lett 133: 15–19PubMedCrossRefGoogle Scholar
  27. Pangalos MN, Francis PT, Middlemiss DN, Pearson RCA, Bowen DM (1991) Selective destruction of a sub-population of cortical neurones by suicide transport of volkensin, a lectin from Adenia volkensii. J Neurosci Meth 40: 17–29CrossRefGoogle Scholar
  28. Pangalos MN, Francis PT, Foster AC, Pearson RCA, Middlemiss DN, Bowen DM (1992) NMDA receptors assessed by autoradiography with [3H] L-689,560 are present but not enriched on corticofugal-projecting pyramidal neurones. Brain Res 596: 223–230PubMedCrossRefGoogle Scholar
  29. Pearce BD, Potter LT (1991) Coupling of m1 muscarinic receptors to G protein in Alzheimer disease. Alzheimer Dis Assoc Disord 5: 163–172PubMedCrossRefGoogle Scholar
  30. Procter AW, Lowe SL, Palmer AM, Francis PT, Esiri MM, Stratmann GC, Najlerahim A, Patel AJ, Hunt A, Bowen DM (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease. J Neurol Sci 84: 125–140PubMedCrossRefGoogle Scholar
  31. Procter AW, Doshi R, Bowen DM, Murphy E (1990) Rapid autopsy brains for biochemical research: experiences in establishing a programme. Int J Geriatr Psychiatry 5: 287–294CrossRefGoogle Scholar
  32. Roch J-M, Jin L-W, Ninomiya H, Schubert D, Saitoh T (1993) Biologically active domain of the secreted form of the amyloid (β/A4 protein precursor. Ann N Y Acad Sci 695: 149–157PubMedCrossRefGoogle Scholar
  33. Shigematsu K, McGeer PL, McGeer EG (1992) Localization of amyloid precursor protein in selective postsynaptic densities of rat cortical neurons. Brain Res 592: 353–357PubMedCrossRefGoogle Scholar
  34. Sinha S, Lieberburg I (1992) Normal metabolism of the amyloid precursor protein ( APP ). Neurodegeneration 1: 169–175Google Scholar
  35. Webster M-T, Francis PT, Procter AW, Stratmann GC, Doshi R, Mann DMA, Bowen DM (1994) Postmortem brains reveal similar but not identical APP-like immuno- reactivity in Alzheimer compared with other dementias: implication for the novel homologue APPH. Brain Res 644: 347–351PubMedCrossRefGoogle Scholar
  36. Wiley RG (1992) Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends Neurosci 15: 285–290PubMedCrossRefGoogle Scholar
  37. Zilles K, Gross G, Schleicher A, Schildgen S, Bauer A, Bahro M, Schwendemann G, Zeck K, Kolassa N (1991) Regional and laminar distributions of aradrenoceptors and their subtypes in human and rat hippocampus. Neuroscience 40: 307–320PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • I. P. Chessell
    • 1
  • P. T. Francis
    • 1
  • M-T. Webster
    • 1
  • A. W. Procter
    • 1
  • P. R. Heath
    • 2
  • R. C. A. Pearson
    • 2
  • D. M. Bowen
    • 1
  1. 1.Miriam Marks Department of NeurochemistryInstitute of NeurologyLondonUK
  2. 2.Department of Biomedical SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations