Primary cultures of neurons for testing neuroprotective drug effects

  • H. Oberpichler-Schwenk
  • J. Krieglstein
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 44)


Primary cultures of neurons are widely used for the investigation of pathomechanisms of neuronal damage und for the evaluation of neuroprotective drug effects. The present paper gives a short survey of frequently used primary neuronal culture systems and of experimental measures for the induction of defined neuronal damage with particular respect to the pathomechanisms of cerebral ischemia. Neuroprotective durg effects as achieved under these conditions are reviewed, and the neuroprotective effects of glutamate antagonists, radical scavengers, and neural growth factors are discussed in some more detail.


Cerebral Ischemia Neuroprotective Effect Middle Cerebral Artery Occlusion Neuronal Damage Neuronal Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





2-Amino-5-phosphonovaleric acid






Lactate dehydrogenase






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlemeyer B, Krieglstein J (1989) Testing drug effects against hypoxic damage of cultured neurons during long-term recovery. Life Sci 45: 835–842PubMedCrossRefGoogle Scholar
  2. Ascher P, Nowak L (1987) Electrophysiological studies of NMD A receptors. Trends Neurosci 10: 284–288CrossRefGoogle Scholar
  3. Balázs R, Jorgensen OS, Hack N (1988) N-Methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27: 437–451PubMedCrossRefGoogle Scholar
  4. Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209: 809–810PubMedCrossRefGoogle Scholar
  5. Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126: 397–425PubMedCrossRefGoogle Scholar
  6. Bast A, Haenen GRMM (1988) Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta 963: 558–561PubMedGoogle Scholar
  7. Beckman JS, Chen J, Ischiropoulos H, Conger KA (1992) Inhibition of nitric oxide synthesis and cerebral protection. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 383–394Google Scholar
  8. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374PubMedCrossRefGoogle Scholar
  9. Cheng B, Mattson MP (1991) NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7: 1031–1041PubMedCrossRefGoogle Scholar
  10. Cheng B, Mattson MP (1992) IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci 12: 1558–1566PubMedGoogle Scholar
  11. Choi DW (1987) Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 369–379PubMedGoogle Scholar
  12. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634PubMedCrossRefGoogle Scholar
  13. Choi DW, Maulucci-Gedde MA, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 357–368PubMedGoogle Scholar
  14. Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMD A antagonists. J Neurosci 8: 185–196PubMedGoogle Scholar
  15. Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240: 649–653PubMedCrossRefGoogle Scholar
  16. Dichter MA (1978) Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res 149: 279–293PubMedCrossRefGoogle Scholar
  17. Finkbeiner C, Stevens CF (1988) Applications of quantitative measurements for assessing glutamate neurotoxicity. Proc Natl Acad Sci USA 85: 4071–4074PubMedCrossRefGoogle Scholar
  18. Flanders KC, Liidecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K (1991) Localization and actions of transforming growth factor-ßs in the embryonic nervous system. Development 113: 183–191PubMedGoogle Scholar
  19. Frandsen A, Schousboe A (1992) Mobilization of dantrolene-sensitive intracellular calcium pool is involved in the cytotoxicity induced by quisqualate and N-methyl- D-aspartate but not by (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sci USA 89: 2590–2594PubMedCrossRefGoogle Scholar
  20. Furuya S, Ohmori H, Shigemoto T, Sugiyama H (1989) Intracellular calcium mobilization triggered by a glutamate receptor in rat cultured hippocampal cells. J Physiol 414: 539–548PubMedGoogle Scholar
  21. Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Meth 4: 329–342CrossRefGoogle Scholar
  22. Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7: 3343–3349PubMedGoogle Scholar
  23. Glaum SR, Scholz WK, Miller RJ (1990) Acute and long-term glutamate-mediated regulation of [Ca2+]i in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253: 1293–1302PubMedGoogle Scholar
  24. Goldberg WJ, Kadingo RM, Barrett JN (1986) Effects of ischemia-like conditions on cultured neurons: protection by low Na+, low Ca2+ solutions. J Neurosci 6: 3144–3151PubMedGoogle Scholar
  25. Goldberg MP, Weiss JH, Pham PC, Choi DW (1987) N-Methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J Pharmacol Exp Ther 243: 784–791PubMedGoogle Scholar
  26. Goldberg MP, Viseskul V, Choi DW (1988) Phencyclidine receptor ligands attenuate cortical injury after N-methyl-D-aspartate exposure or hypoxia. J Pharmacol Exp Ther 245: 1081–1087PubMedGoogle Scholar
  27. Harris KM, Rosenberg PA (1993) Localization of synapses in rat cortical cultures. Neuroscience 53: 495–508PubMedCrossRefGoogle Scholar
  28. Honoré T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241: 701–703PubMedCrossRefGoogle Scholar
  29. Huettner JE, Baughman RW (1986) Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci 6: 3044–3060PubMedGoogle Scholar
  30. Ichikawa M, Muramoto K, Kobayashi K, Kawahara M, Kuroda Y (1993) Formation and maturation of synapses of rat cerebral cortical cells: an electron microscopic study. Neurosci Res 16: 95–103PubMedCrossRefGoogle Scholar
  31. Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325: 522–525PubMedCrossRefGoogle Scholar
  32. Juurlink B H J, Hertz L (1993) Ischemia-induced death of astrocytes and neurons in primary culture: pitfalls in quantifying neuronal cell death. Dev Brain Res 71: 239–246CrossRefGoogle Scholar
  33. Kaku DA, Goldberg MP, Choi DW (1991) Antagonism of non-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res 554: 344–347PubMedCrossRefGoogle Scholar
  34. Karkoutly C, Backhauß C, Nuglisch J, Krieglstein J (1990) The measurement of the infarcted area after middle cerebral artery occlusion in the mouse: a screening model. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 63–69Google Scholar
  35. Klempt ND, Sirimanne E, Gunn AJ, Klempt M, Singh K, Williams C, Gluckmann PD (1992) Hypoxia-ischemia induces transforming growth factor ß1 mRNA in the infant rat brain. Mol Brain Res 13: 93–101PubMedCrossRefGoogle Scholar
  36. Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Meth 20: 83–90CrossRefGoogle Scholar
  37. Krieglstein J, Brungs H, Peruche B (1988) Cultured neurons for testing cerebroprotective drug effects in vitro. J Pharmcol Meth 20: 39–46CrossRefGoogle Scholar
  38. Krieglstein J, Sauer D, Nuglisch J Roßberg C, Beck T, Bielenberg GW, Mennel HD (1989) Naftidrofuryl protects neurons against ischemic damage. Eur Neurol 29: 224–228PubMedCrossRefGoogle Scholar
  39. Lefebvre PP, Staecker H, Weber T, Vandewater TR, Rogister B, Moonen G (1991) TGF-ßi modulates bFGF receptor message expression in cultured adult auditory neurons. Neuro Report 2: 305–308Google Scholar
  40. Lindholm D, Hengerer B, Zafra F, Thoenen H (1990) Transforming growth factor-ßx stimulates expression of nerve growth factor in the rat CNS. Neuro Report 1: 9–12Google Scholar
  41. Lippert K, Welsch M, Krieglstein J (1992) The neuroprotective effect of combined treatment with dizocilpine and NBQX in vitro and in vivo. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 147–153Google Scholar
  42. Lippert K, Welsch M, Krieglstein J (1994) Over-additive protective effect of dizocilpine and NBQX against neuronal damage. Eur J Pharmacol (in press)Google Scholar
  43. Louis JC, Pettmann B, Courageot J, Rumigny JF, Mandel P, Sensenbrenner M (1981) Developmental changes in cultured neurons from chick embryo cerebral hemispheres. Exp Brain Res 42: 63–72PubMedCrossRefGoogle Scholar
  44. Lysko PG, Cox JA, Vigano MA, Henneberry RC (1989) Excitatory amino acid neurotoxicity at the N-methyl-D-aspartate receptor in cultured neurons: pharmacological characterization. Brain Res 499: 258–266PubMedCrossRefGoogle Scholar
  45. MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522PubMedCrossRefGoogle Scholar
  46. Mattson MP, Kater SB (1989) Development and selective neurodegeneration in cell cultures from different hippocampal regions. Brain Res 490: 110–125PubMedCrossRefGoogle Scholar
  47. Mattson MP, Lee RE, Adams ME, Guthrie PB, Kater SB (1988) Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1: 865–876PubMedCrossRefGoogle Scholar
  48. Mattson MP, Murrain M, Guthrie PB, Kater SB (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9: 3728–3740PubMedGoogle Scholar
  49. Messer A (1977) The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res 130: 1–12PubMedCrossRefGoogle Scholar
  50. Miller RJ, Brorson JR, Bleakman D, Chard PS (1992) Glutamate receptors in the regulation of neuronal Ca2+. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 3–11Google Scholar
  51. Monyer H, Hartley DM, Choi DW (1990) 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5: 121–126PubMedCrossRefGoogle Scholar
  52. Müller HW, Seifert W (1982) A neurotrophic factor ( NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res 8: 195–204PubMedCrossRefGoogle Scholar
  53. Müller U, Lippert K, Prehn JHM, Krieglstein J (1993) Chronic treatment with thioctic acid reduces excitotoxic neuronal damage in vitro. J Cereb Blood Flow Metab 13 [Suppl] I: S673Google Scholar
  54. Nakajima Y, Nakajima S, Leonard RJ, Yamaguchi K (1986) Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons. Proc Natl Acad Sci USA 83: 3022–3026PubMedCrossRefGoogle Scholar
  55. Nichols NR, Laping NJ, Day JR, Finch CE (1991) Increases in transforming growth factor-P mRNA in hippocampus during responses to entorhinal cortex lesions in intact and adrenalectomized rats. J Neurosci Res 28: 134–139PubMedCrossRefGoogle Scholar
  56. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212PubMedCrossRefGoogle Scholar
  57. Oberpichler H, Brungs H, Krieglstein J (1990) Effects of delayed administration of methohexital and ketamine on post-hypoxic cell damage of primary neuronal cultures. Pharmacology 40: 165–173PubMedCrossRefGoogle Scholar
  58. Olney J (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW, McGeer PL (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 37–70Google Scholar
  59. Ozyurt E, Graham D, Woodruff GN, McCulloch J (1988) Protective effect of the glutamate antagonist, MK-801, in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8: 138–143PubMedCrossRefGoogle Scholar
  60. Pagani S, Iametti S, Cervato G, Cestaro B (1989) Transmembrane mobility of the physiological dithiol D,L-dihydrolipoate. Biochem Int 18: 923–932Google Scholar
  61. Pauwels PJ, Opperdoes FR, Trouet A (1985) Effects of antimycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J Neurochem 44: 143–148PubMedCrossRefGoogle Scholar
  62. Peruche B, Krieglstein J (1993) Mechanisms of drug actions against neuronal damage caused by ischemia — an overview. Prog Neuropsychopharmacol Biol Psychiatry 17: 21–70PubMedCrossRefGoogle Scholar
  63. Peruche B, Ahlemeyer B, Brungs H, Krieglstein J (1990) Cultured neurons for testing antihypoxic drug effects. J Pharmacol Meth 23: 63–77CrossRefGoogle Scholar
  64. Pettmann B, Louis JC, Sensenbrenner M (1979) Morphological and biochemical maturation of neurons cultured in the absence of glial cells. Nature 281: 378–380PubMedCrossRefGoogle Scholar
  65. Pöch G, Holzmann S (1980) Quantitative estimation of overadditive and underadditive drug effects by means of theoretical, additive dose response curves. J Pharmacol Meth 4: 179–188CrossRefGoogle Scholar
  66. Prehn JHM, Krieglstein J (1991) Primary neuronal cultures from chick embryo cerebral hemispheres: a model for studying trophic and toxic effects of excitatory amino acids. J Cereb Blood Flow Metab 11 [Suppl] II: S317Google Scholar
  67. Prehn JHM, Krieglstein J (1993) Platelet-activating factor antagonists reduce excitotoxic damage in cultured neurons from embryonic chick telencephalon and protect the rat hippocampus and neocortex from ischemic injury in vivo. J Neurosci Res 34: 179–188PubMedCrossRefGoogle Scholar
  68. Prehn JHM, Karkoutly C, Nuglisch J, Peruche B, Krieglstein J (1992) Dihydrolipoate reduces neuronal injury after cerebral ischemia. J Cereb Blood Flow Metab 12: 78–87PubMedCrossRefGoogle Scholar
  69. Prehn JHM, Backhauß C, Krieglstein J (1993a) Transforming growth factor-ßi prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 13: 521–525PubMedCrossRefGoogle Scholar
  70. Prehn JHM, Peruche B, Unsicker K, Krieglstein J (1993b) Isoform-specific effects of transforming growth factors-ß on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate. J Neurochem 60: 1665–1672PubMedCrossRefGoogle Scholar
  71. Pulsinelli W, Pellegrini-Giampietro D, Zukin S, Bennett M, Cho S (1992) AMPA receptors: their in vivo role in selective ischemic necrosis of CA1 hippocampal neurons. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 53–58Google Scholar
  72. Roberts AB, Sporn MB (1990) The transforming growth factors-ß. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors. Springer, Berlin Heidelberg New York Tokyo, pp 419–472 (Handbook of experimental pharmacology, vol 95 )Google Scholar
  73. Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220: 536–537PubMedCrossRefGoogle Scholar
  74. Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4: 1884–1891PubMedGoogle Scholar
  75. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111PubMedCrossRefGoogle Scholar
  76. Rothman SM, Samaie M (1985) Physiology of excitatory synaptic transmission in cultures of dissociated rat hippocampus. J Neurophysiol 54: 701–713PubMedGoogle Scholar
  77. Rothman SM, Thurston JH, Hauhart RE, Clark GD, Solomon JS (1987) Ketamine protects hippocampal neurons from anoxia in vitro. Neuroscience 21: 673–678PubMedCrossRefGoogle Scholar
  78. Samples SD, Dubinsky JM (1993) Aurintricarboxylic acid protects hippocampal neurons from glutamate excitotoxicity in vitro. J Neurochem 61: 382–385PubMedCrossRefGoogle Scholar
  79. Sargent PB (1989) What distinguishes axons from dendrites? Neurons know more than we do. Trends Neurosci 12: 203–205PubMedCrossRefGoogle Scholar
  80. Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702PubMedCrossRefGoogle Scholar
  81. Scott BS (1982) Adult neurons in cell culture: electrophysiological characterization and use in neurobiological research. Progr Neurobiol 19: 187–211CrossRefGoogle Scholar
  82. Seifel Nasr M, Peruche B, Roßberg C, Mennel HD, Krieglstein J (1990) Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 185: 19–24CrossRefGoogle Scholar
  83. Sheardown MJ, Hansen AJ, Eskesen K, Suzdak P, Diemer NH, Honoré T (1990) Blockade of AMPA receptors in the CA1 region of the hippocampus prevents ischaemia induced cell death. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 245–253Google Scholar
  84. Siesjö BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cere- brovasc Brain Metab Rev 1: 165–211Google Scholar
  85. Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852PubMedCrossRefGoogle Scholar
  86. Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317: 717–719PubMedCrossRefGoogle Scholar
  87. Söderbäck M, Hansson E, Tottmar O, Ronnback L (1989) Neurons in primary cultures from five defined rat brain regions: cellular composition and morphological appearance. Cell Mol Biol 35: 1–16PubMedGoogle Scholar
  88. Trussell LO, Thio LL, Zorumski CF, Fischbach GD (1986) Rapid desensitization of glutamate receptors in vertebrate cultured neurons. Proc Natl Acad Sci USA 85: 4562–4566CrossRefGoogle Scholar
  89. Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44: 613–625PubMedCrossRefGoogle Scholar
  90. Unsicker K, Prehn JHM, Backhauß C, Krieglstein K, Otto D, Krieglstein J (1992) Growth factors and their implications for the injured brain: regulation and neuroprotective effects of FGFs and TGF-Gs in ischemic and other lesion paradigms. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 229–238Google Scholar
  91. Weiss S, Pin JP, Sebben M, Kemp DE, Sladeczek F, Gabrion J, Bockaert J (1986) Synaptogenesis of cultured striatal neurons in serum-free medium: a morphological and biochemical study. Proc Natl Acad Sci USA 83: 2238–2242PubMedCrossRefGoogle Scholar
  92. Yamada KA, Dubinsky JM, Rothman SM (1989) Quantitative physiological characterization of a quinoxalinedione non-NMDA receptor antagonist. J Neurosci 9: 3230–3236PubMedGoogle Scholar
  93. Yamashita N, Nishiyama N, Abe K, Saito H, Fukuda J (1992) Primary culture of postnatal rat hypothalamic neurons in astrocyte-conditioned medium. Brain Res 594: 215–220PubMedCrossRefGoogle Scholar
  94. Zorumski CF, Thio LL, Clark GD, Clifford DB (1989) Calcium influx through N- methyl-D-aspartate channels activates a potassium current in postnatal rat hippocampal neurons. Neurosci Lett 99: 293–299PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. Oberpichler-Schwenk
    • 1
  • J. Krieglstein
    • 1
  1. 1.Institut für Pharmakologie und ToxikologiePhilipps-UniversitätMarburgFederal Republic of Germany

Personalised recommendations