Skip to main content

Primary cultures of neurons for testing neuroprotective drug effects

  • Conference paper

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 44))

Summary

Primary cultures of neurons are widely used for the investigation of pathomechanisms of neuronal damage und for the evaluation of neuroprotective drug effects. The present paper gives a short survey of frequently used primary neuronal culture systems and of experimental measures for the induction of defined neuronal damage with particular respect to the pathomechanisms of cerebral ischemia. Neuroprotective durg effects as achieved under these conditions are reviewed, and the neuroprotective effects of glutamate antagonists, radical scavengers, and neural growth factors are discussed in some more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methylisoxazole-4-propionate

APV:

2-Amino-5-phosphonovaleric acid

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

DNQX:

6,7-Dinitroquinoxaline-2,3-dione

LDH:

Lactate dehydrogenase

NBQX:

2,3-Dihydro-6-nitro-7-sulphamoyl-benzo(f)quinoxaline

NMDA:

N-Methyl-D-aspartate

References

  • Ahlemeyer B, Krieglstein J (1989) Testing drug effects against hypoxic damage of cultured neurons during long-term recovery. Life Sci 45: 835–842

    Article  PubMed  CAS  Google Scholar 

  • Ascher P, Nowak L (1987) Electrophysiological studies of NMD A receptors. Trends Neurosci 10: 284–288

    Article  CAS  Google Scholar 

  • Balázs R, Jorgensen OS, Hack N (1988) N-Methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27: 437–451

    Article  PubMed  Google Scholar 

  • Banker GA (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209: 809–810

    Article  PubMed  CAS  Google Scholar 

  • Banker GA, Cowan WM (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res 126: 397–425

    Article  PubMed  CAS  Google Scholar 

  • Bast A, Haenen GRMM (1988) Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta 963: 558–561

    PubMed  CAS  Google Scholar 

  • Beckman JS, Chen J, Ischiropoulos H, Conger KA (1992) Inhibition of nitric oxide synthesis and cerebral protection. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 383–394

    Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Mattson MP (1991) NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7: 1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Mattson MP (1992) IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J Neurosci 12: 1558–1566

    PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 369–379

    PubMed  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Maulucci-Gedde MA, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 357–368

    PubMed  CAS  Google Scholar 

  • Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMD A antagonists. J Neurosci 8: 185–196

    PubMed  CAS  Google Scholar 

  • Connor JA, Wadman WJ, Hockberger PE, Wong RKS (1988) Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 240: 649–653

    Article  PubMed  CAS  Google Scholar 

  • Dichter MA (1978) Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res 149: 279–293

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner C, Stevens CF (1988) Applications of quantitative measurements for assessing glutamate neurotoxicity. Proc Natl Acad Sci USA 85: 4071–4074

    Article  PubMed  CAS  Google Scholar 

  • Flanders KC, Liidecke G, Engels S, Cissel DS, Roberts AB, Kondaiah P, Lafyatis R, Sporn MB, Unsicker K (1991) Localization and actions of transforming growth factor-ßs in the embryonic nervous system. Development 113: 183–191

    PubMed  CAS  Google Scholar 

  • Frandsen A, Schousboe A (1992) Mobilization of dantrolene-sensitive intracellular calcium pool is involved in the cytotoxicity induced by quisqualate and N-methyl- D-aspartate but not by (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sci USA 89: 2590–2594

    Article  PubMed  CAS  Google Scholar 

  • Furuya S, Ohmori H, Shigemoto T, Sugiyama H (1989) Intracellular calcium mobilization triggered by a glutamate receptor in rat cultured hippocampal cells. J Physiol 414: 539–548

    PubMed  CAS  Google Scholar 

  • Gähwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Meth 4: 329–342

    Article  Google Scholar 

  • Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7: 3343–3349

    PubMed  CAS  Google Scholar 

  • Glaum SR, Scholz WK, Miller RJ (1990) Acute and long-term glutamate-mediated regulation of [Ca2+]i in rat hippocampal pyramidal neurons in vitro. J Pharmacol Exp Ther 253: 1293–1302

    PubMed  CAS  Google Scholar 

  • Goldberg WJ, Kadingo RM, Barrett JN (1986) Effects of ischemia-like conditions on cultured neurons: protection by low Na+, low Ca2+ solutions. J Neurosci 6: 3144–3151

    PubMed  CAS  Google Scholar 

  • Goldberg MP, Weiss JH, Pham PC, Choi DW (1987) N-Methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture. J Pharmacol Exp Ther 243: 784–791

    PubMed  CAS  Google Scholar 

  • Goldberg MP, Viseskul V, Choi DW (1988) Phencyclidine receptor ligands attenuate cortical injury after N-methyl-D-aspartate exposure or hypoxia. J Pharmacol Exp Ther 245: 1081–1087

    PubMed  CAS  Google Scholar 

  • Harris KM, Rosenberg PA (1993) Localization of synapses in rat cortical cultures. Neuroscience 53: 495–508

    Article  PubMed  CAS  Google Scholar 

  • Honoré T, Davies SN, Drejer J, Fletcher EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241: 701–703

    Article  PubMed  Google Scholar 

  • Huettner JE, Baughman RW (1986) Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci 6: 3044–3060

    PubMed  CAS  Google Scholar 

  • Ichikawa M, Muramoto K, Kobayashi K, Kawahara M, Kuroda Y (1993) Formation and maturation of synapses of rat cerebral cortical cells: an electron microscopic study. Neurosci Res 16: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325: 522–525

    Article  PubMed  CAS  Google Scholar 

  • Juurlink B H J, Hertz L (1993) Ischemia-induced death of astrocytes and neurons in primary culture: pitfalls in quantifying neuronal cell death. Dev Brain Res 71: 239–246

    Article  CAS  Google Scholar 

  • Kaku DA, Goldberg MP, Choi DW (1991) Antagonism of non-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res 554: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Karkoutly C, Backhauß C, Nuglisch J, Krieglstein J (1990) The measurement of the infarcted area after middle cerebral artery occlusion in the mouse: a screening model. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 63–69

    Google Scholar 

  • Klempt ND, Sirimanne E, Gunn AJ, Klempt M, Singh K, Williams C, Gluckmann PD (1992) Hypoxia-ischemia induces transforming growth factor ß1 mRNA in the infant rat brain. Mol Brain Res 13: 93–101

    Article  PubMed  CAS  Google Scholar 

  • Koh JY, Choi DW (1987) Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Meth 20: 83–90

    Article  CAS  Google Scholar 

  • Krieglstein J, Brungs H, Peruche B (1988) Cultured neurons for testing cerebroprotective drug effects in vitro. J Pharmcol Meth 20: 39–46

    Article  CAS  Google Scholar 

  • Krieglstein J, Sauer D, Nuglisch J Roßberg C, Beck T, Bielenberg GW, Mennel HD (1989) Naftidrofuryl protects neurons against ischemic damage. Eur Neurol 29: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre PP, Staecker H, Weber T, Vandewater TR, Rogister B, Moonen G (1991) TGF-ßi modulates bFGF receptor message expression in cultured adult auditory neurons. Neuro Report 2: 305–308

    CAS  Google Scholar 

  • Lindholm D, Hengerer B, Zafra F, Thoenen H (1990) Transforming growth factor-ßx stimulates expression of nerve growth factor in the rat CNS. Neuro Report 1: 9–12

    CAS  Google Scholar 

  • Lippert K, Welsch M, Krieglstein J (1992) The neuroprotective effect of combined treatment with dizocilpine and NBQX in vitro and in vivo. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 147–153

    Google Scholar 

  • Lippert K, Welsch M, Krieglstein J (1994) Over-additive protective effect of dizocilpine and NBQX against neuronal damage. Eur J Pharmacol (in press)

    Google Scholar 

  • Louis JC, Pettmann B, Courageot J, Rumigny JF, Mandel P, Sensenbrenner M (1981) Developmental changes in cultured neurons from chick embryo cerebral hemispheres. Exp Brain Res 42: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Lysko PG, Cox JA, Vigano MA, Henneberry RC (1989) Excitatory amino acid neurotoxicity at the N-methyl-D-aspartate receptor in cultured neurons: pharmacological characterization. Brain Res 499: 258–266

    Article  PubMed  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Kater SB (1989) Development and selective neurodegeneration in cell cultures from different hippocampal regions. Brain Res 490: 110–125

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Lee RE, Adams ME, Guthrie PB, Kater SB (1988) Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry. Neuron 1: 865–876

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Murrain M, Guthrie PB, Kater SB (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9: 3728–3740

    PubMed  CAS  Google Scholar 

  • Messer A (1977) The maintenance and identification of mouse cerebellar granule cells in monolayer culture. Brain Res 130: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Brorson JR, Bleakman D, Chard PS (1992) Glutamate receptors in the regulation of neuronal Ca2+. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 3–11

    Google Scholar 

  • Monyer H, Hartley DM, Choi DW (1990) 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5: 121–126

    Article  PubMed  CAS  Google Scholar 

  • Müller HW, Seifert W (1982) A neurotrophic factor ( NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res 8: 195–204

    Article  PubMed  Google Scholar 

  • Müller U, Lippert K, Prehn JHM, Krieglstein J (1993) Chronic treatment with thioctic acid reduces excitotoxic neuronal damage in vitro. J Cereb Blood Flow Metab 13 [Suppl] I: S673

    Google Scholar 

  • Nakajima Y, Nakajima S, Leonard RJ, Yamaguchi K (1986) Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons. Proc Natl Acad Sci USA 83: 3022–3026

    Article  PubMed  CAS  Google Scholar 

  • Nichols NR, Laping NJ, Day JR, Finch CE (1991) Increases in transforming growth factor-P mRNA in hippocampus during responses to entorhinal cortex lesions in intact and adrenalectomized rats. J Neurosci Res 28: 134–139

    Article  PubMed  CAS  Google Scholar 

  • Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451: 205–212

    Article  PubMed  CAS  Google Scholar 

  • Oberpichler H, Brungs H, Krieglstein J (1990) Effects of delayed administration of methohexital and ketamine on post-hypoxic cell damage of primary neuronal cultures. Pharmacology 40: 165–173

    Article  PubMed  CAS  Google Scholar 

  • Olney J (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW, McGeer PL (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 37–70

    Google Scholar 

  • Ozyurt E, Graham D, Woodruff GN, McCulloch J (1988) Protective effect of the glutamate antagonist, MK-801, in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8: 138–143

    Article  PubMed  CAS  Google Scholar 

  • Pagani S, Iametti S, Cervato G, Cestaro B (1989) Transmembrane mobility of the physiological dithiol D,L-dihydrolipoate. Biochem Int 18: 923–932

    CAS  Google Scholar 

  • Pauwels PJ, Opperdoes FR, Trouet A (1985) Effects of antimycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J Neurochem 44: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Peruche B, Krieglstein J (1993) Mechanisms of drug actions against neuronal damage caused by ischemia — an overview. Prog Neuropsychopharmacol Biol Psychiatry 17: 21–70

    Article  PubMed  CAS  Google Scholar 

  • Peruche B, Ahlemeyer B, Brungs H, Krieglstein J (1990) Cultured neurons for testing antihypoxic drug effects. J Pharmacol Meth 23: 63–77

    Article  CAS  Google Scholar 

  • Pettmann B, Louis JC, Sensenbrenner M (1979) Morphological and biochemical maturation of neurons cultured in the absence of glial cells. Nature 281: 378–380

    Article  PubMed  CAS  Google Scholar 

  • Pöch G, Holzmann S (1980) Quantitative estimation of overadditive and underadditive drug effects by means of theoretical, additive dose response curves. J Pharmacol Meth 4: 179–188

    Article  Google Scholar 

  • Prehn JHM, Krieglstein J (1991) Primary neuronal cultures from chick embryo cerebral hemispheres: a model for studying trophic and toxic effects of excitatory amino acids. J Cereb Blood Flow Metab 11 [Suppl] II: S317

    Google Scholar 

  • Prehn JHM, Krieglstein J (1993) Platelet-activating factor antagonists reduce excitotoxic damage in cultured neurons from embryonic chick telencephalon and protect the rat hippocampus and neocortex from ischemic injury in vivo. J Neurosci Res 34: 179–188

    Article  PubMed  CAS  Google Scholar 

  • Prehn JHM, Karkoutly C, Nuglisch J, Peruche B, Krieglstein J (1992) Dihydrolipoate reduces neuronal injury after cerebral ischemia. J Cereb Blood Flow Metab 12: 78–87

    Article  PubMed  CAS  Google Scholar 

  • Prehn JHM, Backhauß C, Krieglstein J (1993a) Transforming growth factor-ßi prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 13: 521–525

    Article  PubMed  CAS  Google Scholar 

  • Prehn JHM, Peruche B, Unsicker K, Krieglstein J (1993b) Isoform-specific effects of transforming growth factors-ß on degeneration of primary neuronal cultures induced by cytotoxic hypoxia or glutamate. J Neurochem 60: 1665–1672

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli W, Pellegrini-Giampietro D, Zukin S, Bennett M, Cho S (1992) AMPA receptors: their in vivo role in selective ischemic necrosis of CA1 hippocampal neurons. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 53–58

    Google Scholar 

  • Roberts AB, Sporn MB (1990) The transforming growth factors-ß. In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors. Springer, Berlin Heidelberg New York Tokyo, pp 419–472 (Handbook of experimental pharmacology, vol 95 )

    Google Scholar 

  • Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220: 536–537

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4: 1884–1891

    PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM, Samaie M (1985) Physiology of excitatory synaptic transmission in cultures of dissociated rat hippocampus. J Neurophysiol 54: 701–713

    PubMed  CAS  Google Scholar 

  • Rothman SM, Thurston JH, Hauhart RE, Clark GD, Solomon JS (1987) Ketamine protects hippocampal neurons from anoxia in vitro. Neuroscience 21: 673–678

    Article  PubMed  CAS  Google Scholar 

  • Samples SD, Dubinsky JM (1993) Aurintricarboxylic acid protects hippocampal neurons from glutamate excitotoxicity in vitro. J Neurochem 61: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB (1989) What distinguishes axons from dendrites? Neurons know more than we do. Trends Neurosci 12: 203–205

    Article  PubMed  CAS  Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: a final common pathway. Science 206: 700–702

    Article  PubMed  CAS  Google Scholar 

  • Scott BS (1982) Adult neurons in cell culture: electrophysiological characterization and use in neurobiological research. Progr Neurobiol 19: 187–211

    Article  CAS  Google Scholar 

  • Seifel Nasr M, Peruche B, Roßberg C, Mennel HD, Krieglstein J (1990) Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 185: 19–24

    Article  CAS  Google Scholar 

  • Sheardown MJ, Hansen AJ, Eskesen K, Suzdak P, Diemer NH, Honoré T (1990) Blockade of AMPA receptors in the CA1 region of the hippocampus prevents ischaemia induced cell death. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 245–253

    Google Scholar 

  • Siesjö BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cere- brovasc Brain Metab Rev 1: 165–211

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F, Pin JP, Recasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317: 717–719

    Article  PubMed  CAS  Google Scholar 

  • Söderbäck M, Hansson E, Tottmar O, Ronnback L (1989) Neurons in primary cultures from five defined rat brain regions: cellular composition and morphological appearance. Cell Mol Biol 35: 1–16

    PubMed  Google Scholar 

  • Trussell LO, Thio LL, Zorumski CF, Fischbach GD (1986) Rapid desensitization of glutamate receptors in vertebrate cultured neurons. Proc Natl Acad Sci USA 85: 4562–4566

    Article  Google Scholar 

  • Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44: 613–625

    Article  PubMed  CAS  Google Scholar 

  • Unsicker K, Prehn JHM, Backhauß C, Krieglstein K, Otto D, Krieglstein J (1992) Growth factors and their implications for the injured brain: regulation and neuroprotective effects of FGFs and TGF-Gs in ischemic and other lesion paradigms. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 229–238

    Google Scholar 

  • Weiss S, Pin JP, Sebben M, Kemp DE, Sladeczek F, Gabrion J, Bockaert J (1986) Synaptogenesis of cultured striatal neurons in serum-free medium: a morphological and biochemical study. Proc Natl Acad Sci USA 83: 2238–2242

    Article  PubMed  CAS  Google Scholar 

  • Yamada KA, Dubinsky JM, Rothman SM (1989) Quantitative physiological characterization of a quinoxalinedione non-NMDA receptor antagonist. J Neurosci 9: 3230–3236

    PubMed  CAS  Google Scholar 

  • Yamashita N, Nishiyama N, Abe K, Saito H, Fukuda J (1992) Primary culture of postnatal rat hypothalamic neurons in astrocyte-conditioned medium. Brain Res 594: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Zorumski CF, Thio LL, Clark GD, Clifford DB (1989) Calcium influx through N- methyl-D-aspartate channels activates a potassium current in postnatal rat hippocampal neurons. Neurosci Lett 99: 293–299

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Oberpichler-Schwenk, H., Krieglstein, J. (1994). Primary cultures of neurons for testing neuroprotective drug effects. In: Hoyer, S., Müller, D., Plaschke, K. (eds) Cell and Animal Models in Aging and Dementia Research. Journal of Neural Transmission, vol 44. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9350-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9350-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82549-5

  • Online ISBN: 978-3-7091-9350-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics