Advanced Control Concepts for Industrial Robots

  • P. Kopacek
  • P. Otto
  • J. Wernstedt
Conference paper
Part of the Schriftenreihe der Wissenschaftlichen Landesakademie für Niederösterreich book series (AKADNIEDERÖSTER)


Many tasks in robot control are very nonlinear and complex. These tasks can be performed in an advantageous way by using fuzzy methods or artificial neuronal networks. In the first part of this paper the optimal design of fuzzy controllers acting as common nonlinear time discrete controllers is investigated. In the second part artificial neuronal networks in connection with several controller structures are presented. Best results are obtained by using the structure of the adaptive model based robot control system. It is shown that the fuzzy controller and the artificial neuronal networks lead to better results than conventional control concepts.


Fuzzy Controller Control Circuit Industrial Robot Robot Control Linear Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aström, K.J.: Theory and applications of adaptive control: a survey. Automatica, 1987, 19 (5), pp. 471–486CrossRefGoogle Scholar
  2. Fu, K.S., Gonzales, R.C. and Lee, C.S.G.: Robotics: control, vision and intelligence. McGraw Hill, New York, 1987Google Scholar
  3. Koch, M., Kuhn, Th., Wernstedt, J.: Eine neue Entwurfsmethode für Fuzzy Regelungen. at 41 (1993) H. 5, S. 152–158MATHGoogle Scholar
  4. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice Hall, Inc. 1992MATHGoogle Scholar
  5. Kuhn, Th., Wernstedt, J.: ILMFUZZY Version 1. 0 Ein Programmpaket zur Simulation und Optimierung einschleifiger Fuzzy Regelkreise. TU Ilmenau 1992Google Scholar
  6. Mandic, N.J., Scharf, E.M., Mamdani, E.H.: Practical application of a heuristic fuzzy rule-based controllers to the dynamic control of a robot arm. Proc. IEE (1985), 132 pp. 190–203MATHGoogle Scholar
  7. Miller, W.T., III, Glanz, F.H., and Kraft, L.G. III: Application of a general learning algorithm to the control of robotic manipulators. Int. J. Robotics Res., 1987, 6 (2), pp. 84–98CrossRefGoogle Scholar
  8. Miller, W.T., III, Hewes, R.P., Glanz, F. H., and Kraft, L.G. III: Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller. IEEE Trans., 1990, RA-6 (1), pp. 1–9Google Scholar
  9. Poo, A.N., Ang Jr. M.H., Teo, C.L. and Qing Li: Performance of a neuro-model-based robot controller: adaptability and noise rejection. Intelligent Systems Engineering, Autumn 1992, pp. 50–62Google Scholar
  10. Tourassis, V.D.: Computer-control of robotic manipulators using predictors. Proc. 1987 IEEE Symp. on Intelligent control, Philadelphia, Pennsylvania 18–20 January 1987, pp. 204–209Google Scholar
  11. Tourassis, V.D. and Neumann, C.P.: Robust nonlinear feedback control for robot manipulatrs. IEEE Proc. D, 1985, 132, pp. 134143Google Scholar
  12. Tourassis, V.D.: Principles and design of model-based controllers. Int. J. Control, 1988, 47 (5) pp. 1267–1275MATHCrossRefGoogle Scholar
  13. Tzafestas, S.G.: Intelligent Robotic Systems. Marcel Dekker, Inc., New York, 1991MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • P. Kopacek
    • 1
  • P. Otto
    • 2
  • J. Wernstedt
    • 2
  1. 1.Institute for Handling Devices and RoboticsUniversity of TechnologyViennaAustria
  2. 2.Department for Automation and Systems EngineeringUniversity of TechnologyIlmenauFederal Republic of Germany

Personalised recommendations