Advertisement

Emulation of Articulated Robots

  • G. Conte
  • T. Leo
  • S. Longhi
  • R. Zulli
Conference paper
Part of the Schriftenreihe der Wissenschaftlichen Landesakademie für Niederösterreich book series (AKADNIEDERÖSTER)

Abstract

This paper reports on the outgrowth of a complete simulation system for robotic manipulators. The development of general procedures for the kinematic and dynamic simulation of articulated robots and the integration of these procedures into a CAD system are discussed. Particular attention is devoted to the solution of the inverse kinematic and of the motion planning problem. The integration of procedures for the kinematic simulation and the preliminary studies for the integration of dynamics and control procedures confirm the importance of CAD as a basic tool for developing robotic applications.

Keywords

Robotic Manipulator Inverse Kinematic Problem Robot Motion Planning Motion Planning Problem Kinematic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgefors, G. (1986). Distance transform in arbitrary dimensions. In: Computer vision, graphic image processing, vol. 34, pp. 344–371.Google Scholar
  2. Canny, J.F. (1987). The complexity of robot motion planning. MIT Press.Google Scholar
  3. Conte, G., Longhi, S., Zulli, R. (1992). An algorithm for CAD-based generation of collision-free paths for robotic manipulators. In: Preprints of IF AC Workshop CIM’92, Wien,Austria.Google Scholar
  4. Fioretti, S., Jetto, L., Longhi, S. (1990). Geometric modelling of non-redundant manipulators: integration with kinematic and dynamic modelling. In: Mc Graw Hill Book (Ed.) Proceedings of ICARCV’90, Singapore, pp. 616–625.Google Scholar
  5. Fioretti, S., Leo, T., Longhi, S., Pepe, P. (1991). Complexity reduction of robot dynamic equations. In: Proceedings of IEEE TENCON’91, New Delhi, pp.307–311.Google Scholar
  6. Fu, K.S., Gonzales, R.C., Lee, CSG (1987). Robotics: control, sensing, vision and intelligence. Mc Graw Hill, Singapore.Google Scholar
  7. Gupta, K.K., (1992). Motion planning for many degrees of freedom: sequential search with backtracking. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2328–2333.Google Scholar
  8. Hwang, Y.K. (1990). Boundary equations of configuration obstacles for manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 298–303.Google Scholar
  9. Latombe, J. (1991). Robot motion planning. Kluwer Academic Press.CrossRefGoogle Scholar
  10. Lozano-Perez, T. (1983). Spatial planning: a configuration space approach. In: IEEE Transactions on Computers, Vol.C-32, pp. 108–120.MathSciNetCrossRefGoogle Scholar
  11. Lozano-Perez, T. (1981). Automatic planning of manipulator transfer movements. In: IEEE Transactions on System, Man, and Cybernetics, Vol.SMC-11, pp. 681–698.CrossRefGoogle Scholar
  12. Nakamura, Y., Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control. In: Journal of Dynamic systems, Measurement and Control, vol. 108, pp. 163–171.Google Scholar
  13. Ravani, B. (1988). CAD based programming for sensory robots. NATO ASI series F50, Springer Verlag, Berlin.MATHCrossRefGoogle Scholar
  14. Schwartz, J.T., Sharir, M., Hopcroft, J. (1987). Planning, geometry and complexity of robot motion. ABLEX publishing.Google Scholar
  15. Vecchio, L., Nicosia, S., Nicolò, F., Lentini, D. (1980). Automatic generation of dynamic models of manipulators. In: 10th International Symposium on Industrial Robots, Milan.Google Scholar

Copyright information

© Springer-Verlag/Wien 1994

Authors and Affiliations

  • G. Conte
    • 1
  • T. Leo
    • 1
  • S. Longhi
    • 1
  • R. Zulli
    • 1
  1. 1.Dipartimento di Elettronica ed AutomaticaUniversità di AnconaItaly

Personalised recommendations