Advertisement

Structure, Occurrence, Biosynthesis, Biological Activity, Synthesis, and Chemistry of Aromadendrane Sesquiterpenoids

  • H. J. M. Gijsen
  • J. B. P. A. Wijnberg
  • Ae. De Groot
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 64)

Abstract

Aromadendranes (1) belong to a class of sesquiterpenes, structurally characterized by a dimethyl cyclopropane ring fused to a hydroazulene skeleton, as depicted in Fig. 1. Throughout this and the following sections the numbering of the carbon skeleton will be used as given in (1). Next to the aromadendranes, the related sesquiterpenes with a 1,7-cycloaromadendrane, 7,8-seco-, and 9,10-secoaromadendrane skeleton will be discussed. Some dimeric and alkylated aromadendranes, e.g. macrocarpals and prenylaromadendranes are also included in this review. The literature is covered through September 1993.

Keywords

Marine Sponge Soft Coral Total Synthesis Cyclopropane Ring Wittig Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, H.G.: Note on the Sesquiterpene of Eucalyptus Oils. Proc. Roy. Soc. N.S. Wales, 35, 124 (1901).Google Scholar
  2. 2.
    Birch, A.J., and F.N. Lahey: The Structure of Aromadendrene, I. Austral. J. Chem., 6, 379 (1953).Google Scholar
  3. 3.(a).
    Büchi, G., W. Hofheinz, and J.V. Paukstelis: Total Synthesis of (—)-Aromadendrene. J. Amer. Chem. Soc., 88, 4113 (1966).Google Scholar
  4. (b).
    Büchi, G., W. Hofheinz, and J.V. Paukstelis: Synthesis of (—)-Aromadendrene and Related Sesquiterpenes. J. Amer. Chem. Soc., 91, 6473 (1969).Google Scholar
  5. 4.(a).
    Palmade, M., and G. Ourisson: La Structure de l’a-Gurjunene (Note Préliminaire). Bull. Soc. Chim. France, 886 (1958).Google Scholar
  6. (b).
    Treibs, W., and D. Merkel: Über die Gurjunene, II: a-Gurjunen. Liebigs Ann. Chem., 617, 129 (1958) and references cited therein.Google Scholar
  7. 5.(a).
    Palmade, M., P. Pesnelle, J. Streith, and G. Ourisson: L’a-Gurjunene, I: Structure et Stéréochimie. Bull. Soc. Chim. France, 1950 (1963).Google Scholar
  8. (b).
    Streith, J., and G. Ourisson: L’a-Gurjunene, II: Quelques Réactions de l’a-Gurjunene. Bull. Soc. Chim. France, 1960 (1963).Google Scholar
  9. 6.
    Pesnelle, P., and G. Ourisson: Hydroboration of a-Gurjunene. A Rational Correlation with Cyclocolorenone. J. Organ. Chem., 30, 1744 (1965).Google Scholar
  10. 7.
    Corbett, R.E., and R.N. Speden: The Volatile Oil of Pseudowintera colorata, Part II: The Structure of Cyclocolorenone. J. Chem. Soc. (London), 3710 (1958).Google Scholar
  11. 8.
    Büchi, G., J.M. Kauffman, and J.E. Loewenthal: Synthesis of 1-Epicyclocolorenone and Stereochemistry of Cyclocolorenone. J. Amer. Chem. Soc., 88, 3403 (1966).Google Scholar
  12. 9.
    Swords, G., and G.L.K. Hunter: Composition of Australian Tea Tree Oil (Melaleuca alternifolia). J. Agric. Food Chem., 26, 734 (1978).Google Scholar
  13. 10.
    Van Der Gen, A., L.M. Van Der Linde, and J.G. Witteveen: Synthesis of Guaipyridine and Some Related Sesquiterpene Alkaloids. Rec. Tray. Chim. Pays-Bas, 91, 1433 (1972).Google Scholar
  14. 11.
    Friedel, H.D., and R. Matusch: New Aromadendrane Derivatives from Tolu Balsam. Hely. Chim. Acta, 70, 1753 (1987).Google Scholar
  15. 12.
    Terhune, S.J., J.W. Hogg, and B.M. Lawrence: Essential Oils and Their Constituents, XV: ß-Spathulene. A New Sesquiterpene in Schinus molle Oil. Phytochem., 13, 865 (1974).Google Scholar
  16. 13.
    Kingston, D.G.I., M.M. Rao, T.D. Spittler, R.C. Pettersen, and D.L. Cullen: Sesquiterpenes from Flourensia cernua. Phytochem., 14, 2033 (1975).Google Scholar
  17. 14.
    Bohlmann, F., C. Zdero, E. Hoffmann, P.K. Mahanta, and W. Dorner: Naturally Occurring Terpene Derivatives, Part 166: New Diterpenes and Sesquiterpenes from South African Helichrysum Species. Phytochem., 17, 1917 (1978).Google Scholar
  18. 15.
    Bohlmann, F., M. Grenz, J. Jakupovic, R.M. King, and H. Robinson: Naturally Occurring Terpene Derivatives, Part 457: Four Heliangolides and Other Sesquiterpenes from Brasilia sickii. Phytochem., 22, 1213 (1983).Google Scholar
  19. 16.
    Crevoisier, M., K.C. Steudle, and H.B. Buergi: 3,3,11-Trimethyl-7-methylenetricyclo[6.3.0.02’4]undecane-5,11-diol, C15H2402. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., C40, 979 (1984).Google Scholar
  20. 17.
    Bohlmann, F., C. Zdero, R.M. King, H. Robinson: New Aromadendrene Derivatives from Wyethia arizonica. Planta Med., 50, 195 (1984).Google Scholar
  21. 18.
    Martinez, M., G. Flores, A. Romo De Vivar, G. Reynolds, and E. Rodriguez: Guayulins C and D from Guayule (Parthenium argentatum). J. Nat. Prod., 49, 1102 (1986).Google Scholar
  22. 19.(a).
    Goldsby, G., and B.A. Burke: Sesquiterpene Lactones and a Sesquiterpene Diol from Jamaican Ambrosia peruviana. Phytochem., 26, 1059 (1987).Google Scholar
  23. (b).
    Silva, G.L., J.C. Oberti, and W. Herz: Sesquiterpene Lactones and Other Constituents of Argentine Ambrosia Species. Phytochem., 31, 859 (1992).Google Scholar
  24. 20.
    Jakupovic, J., A. Schuster, F. Bohlmann, R.M. King, and N.S. Lander: Sesquiterpene Lactones from Gnephosis Species. Phytochem., 27, 3181 (1988).Google Scholar
  25. 21.
    Jakupovic, J., L. Lehmann, F. Bohlmann, R.M. King, and H. Robinson: Sesquiterpene Lactones and Other Constituents from Cassinia, Actinobole and Anaxeton Species. Phytochem., 27, 3831 (1988).Google Scholar
  26. 22.
    Jakupovic, J., A. Schuster, F. Bohlmann, R.M. King, and L. Haegi: Labdane Derivatives and Other Constituents from Waitzia acuminata. Phytochem., 28, 1943 (1989).Google Scholar
  27. 23.
    San Feliciano, A., M. Medarde, M. Gordaliza, E. Del Olmo, and J.M. Miguel Del Corral: Sesquiterpenoids and Phenolics of Pulicaria paludosa. Phytochem., 28, 2717 (1989).Google Scholar
  28. 24.
    Bohlmann, F., P. Singh, and J. Jakupovic: Naturally Occurring Terpene Derivatives, Part 429: Sesquiterpenes and a Dimeric Spiroketone from Cineraria fruticulorum. Phytochem., 21, 2531 (1982).Google Scholar
  29. 25.
    Pizza, C., and N. De Tommasi: Plant Metabolites, Part 12: Sesquiterpene Glycosides Based on the Alloaromadendrane Skeleton from Calendula arvensis. Phytochem., 27, 2205 (1988).Google Scholar
  30. 26.
    Jakupovic, J., M. Grenz, F. Bohlmann, A. Rustaiyan, and S. Koussari: Sesguiterpene Glycosides from Calendula persica. Planta Med., 54, 254 (1988).Google Scholar
  31. 27.
    De Tommasi, N., C. Pizza, C. Conti, N. Orsi, and M.L. Stein: Structure and in vitro Antiviral Activity of Sesquiterpene Glycosides from Calendula arvensis. J. Nat. Prod., 53, 830 (1990).Google Scholar
  32. 28.
    Takaoka, D., H. Kawahara, S. Ochi, M. Hiroi, H. Nozaki, M. Nakayama, K. Ishizaki, K. Sakata, and K. Ina: The Structures of Sesquiterpene Glycosides from Pittosporum tobira. Ait. Chem. Lett., 1121 (1986).Google Scholar
  33. 29.
    Batey, I.L., R.O. Hellyer, J.T. Pinhey: The Structure of Squamulosone, a New Sesquiterpene Ketone from Phebalium squamulosum. Austral. J. Chem., 24, 2173 (1971).Google Scholar
  34. 30.
    Miski, M., H.A. Moubasher, and T.J. Mabry: Sesquiterpene Aryl Esters from Ferulago antiochia. Phytochem., 29, 881 (1990).Google Scholar
  35. 31.
    Tressl, R., K.H. Engel, M. Kossa, and H. Köppler: Characterization of Tricyclic Sesquiterpenes in Hop (Humulus lupulus, var. Hersbrucker Spät). J. Agric. Food Chem., 31, 892 (1983).Google Scholar
  36. 32.
    Maurer, B., and A. Hauser: New Sesquiterpenoids from Clary Sage Oil (Salvia sclarea L.). Hely. Chim. Acta, 66, 2223 (1983).Google Scholar
  37. 33.
    Garcia-Granados, A., and A. Molina: New Aromadendranic Sesquiterpenes from Sideritis varoi ssp. cuatrecasasii. Canad. J. Chem., 67, 1288 (1989).Google Scholar
  38. 34.
    Wratten, S.J., and D.J. Faulkner: Metabolites of the Red Alga Laurencia subopposita. J. Organ. Chem., 42, 3343 (1977).Google Scholar
  39. 35.
    Beechan, C.M., C. Djerassi, and H. Eggert: Terpenoids, LXXIV: The Sesquiterpenes from the Soft Coral Sinularia mayi. Tetrahedron, 34, 2503 (1978).Google Scholar
  40. 36.
    Braekman, J.C., D. Daloze, R. Ottinger, and B. Tursch: Chemical Studies of Marine Invertebrates, XXVII: On the Absolute Configuration of Arcmadendrane Sesquiterpenes from the Soft Coral Cespitularia aff. subviridis. Experientia, 33, 993 (1977).Google Scholar
  41. 37.(a).
    Braekman, J.C., D. Daloze, C. Stoller, and J.P. Declercq: The Configuration of Palustrol and Related Compounds. Bull. Soc. Chim. Belges, 98, 869 (1989).Google Scholar
  42. (b).
    Cheer, C.J., D.H. Smith, C. Djerassi, B. Tursch, J.C. Braekman, and D. Daloze: Chemical Studies of Marine Invertebrates, XVII: The Computer-Assisted Identification of (+)-Palustrol in the Marine Organism Cespitularia sp., aff. subviridis. Tetrahedron, 32, 1807 (1976).Google Scholar
  43. 38.
    Naves, Y.: Etudes sur les Matieres Végétales Volatiles CLXI. Présence de Lédol dans l’Huile Essentielle de Carquéja. Hely. Chim. Acta, 42, 1996 (1959).Google Scholar
  44. 39.
    Braekman, J.C., D. Daloze, A. Dupont, B. Tursch, J.P. Declercq, G. Germain, and M. Van Meerssche: Chemical Studies of Marine Invertebrates, XLIII: Novel Sesquiterpenes from Clavularia inflata and Clavularia koellikeri (Coelenterata, Octocorallia, Stolonifera). Tetrahedron, 37, 179 (1981).Google Scholar
  45. 40.
    Bowden, B.F., J.C. Coll, L.M. Engelhardt, A. Heaton, and A.H. White: Studies of Australian Soft Corals, XLI: Structure Determination of a New Sesquiterpene from Xenia novae-britanniae and an Investigation of a Xenia Species. Austral. J. Chem., 40, 1483 (1987).Google Scholar
  46. 41.
    Tada, H., and F. Yasuda: Metabolites from the Marine Sponge Epipolasis kushimotoensis. Chem. Pharm. Bull., 33, 1941 (1985).Google Scholar
  47. 42.(a).
    Ciminiello, P., E. Fattorusso, S. Magno, and L. Mayol: New Nitrogenous Sesquiterpenes Based on Alloaromadendrane and epi-Eudesmane Skeletons from the Marine Sponge Axinella cannabina. Canad. J. Chem., 65, 518 (1987).Google Scholar
  48. (b).
    Fattorusso, E., S. Magno, L. Mayol, C. Santacroce, and D. Sica: New Sesquiterpenoids from the Sponge Axinella cannabina. Tetrahedron, 31, 269 (1975).Google Scholar
  49. (c).
    Fattorusso, E., S. Magno, L. Mayol, C. Santacroce, and D. Sica: Isolation and Structure of Axisonitrile-2: New Sesquiterpenoid Isonitrile from the Sponge Axinella cannabina. Tetrahedron, 30, 3911 (1974).Google Scholar
  50. 43.
    Capon, R.J., and J.K. Macleod: New Isothiocyanate Sesquiterpenes from the Australian Marine Sponge Acanthella pulcherrima. Austral. J. Chem., 41, 979 (1988).Google Scholar
  51. 44.(a).
    Braekman, J.C., D. Daloze, B. Moussiaux, C. Stoller, and F. Deneubourg: Sponge Secondary Metabolites: New Results. Pure and Appl. Chem., 61, 509 (1989).Google Scholar
  52. (b).
    Mayol, L., V. Piccialli, and D. Sica: Nitrogenous Sesquiterpenes from the Marine Sponge Acanthella acuta. Three New Isocyanide-Isothiocyanate Pairs. Tetrahedron, 43, 5381 (1987).Google Scholar
  53. (c).
    Braekman, J.C., D. Daloze, F. Deneubourg, J. Huysecom, and G. Vandevyver:1-Isocyanoaromadendrane, a New Isonitrile Sesquiterpene from the Sponge Acanthella acuta. Bull. Soc. Chim. Belges, 96, 539 (1987).Google Scholar
  54. 45.(a).
    Faulkner, D.J., T.F. Molinski, R.J. Andersen, E.J. Dumdei, and E. Dilip De Silva: Geographical Variation in Defensive Chemicals from Pacific Coast Dorid Nudibranchs and Some Related Marine Molluscs. Comp. Biochem. Physiol., C: Comp. Pharmacol. Toxicol., 97C, 233 (1990).Google Scholar
  55. (b).
    Thompson, J.E., R.P. Walker, S.J. Wratten, and D.J. Faulkner: A Chemical Defense Mechanism for the Nudibranch Cadlina luteomarginata. Tetrahedron, 38, 1865 (1982).Google Scholar
  56. 46.
    Wu, C.L., F.F. Wey, and S.J. Hsu: Sesquiterpene Hydrocarbons of the Liverwort Scapania ornithopodioides. Phytochem., 21, 2659 (1982).Google Scholar
  57. 47.
    Matsuo, A., and D. Takaoka: Structures of New Sesquiterpenoids from the Liverwort Mylia taylorii. Proc. Phytochem. Soc. Eur., 29 (Bryophytes: Their Chem. Chem. Taxon.), 59 (1990).Google Scholar
  58. 48.
    Asakawa, Y., M. Toyota, and T. Takemoto: Three ent-Secoaromadendrane-Type Sesquiterpene Hemiacetals and a Bicyclogermacrene from Plagiochila ovalifolia and Plagiochila yokogurensis. Phytochem., 19, 2141 (1980).Google Scholar
  59. 49.
    Paknikar, S.K., C.G. Naik, N.H. Andersen, and Y. Ohta: (—)-Aromadendrene (13-Diploalbicene) and (+)-ent-C10-Epiglobulol (Diploalbicanol) from Genus Diplophyllum. Indian J. Chem., 24B, 450 (1985).Google Scholar
  60. 50.
    Asakawa, Y., M. Toyota, and T. Takemoto: Sesquiterpenes from Porella Species. Phytochem., 17, 457 (1978).Google Scholar
  61. 51.
    Matsuo, A., M. Nakayama, S. Sato, T. Nakamoto, S. Uto, and S. Hayashi: (—)-Maalioxide and (+)-Cyclocolorenone, Enantiomeric Sesquiterpenoids from the Liverwort Plagiochila acanthophylla subsp. japonica. Experientia, 30, 321 (1974).Google Scholar
  62. 52.
    Toyota, M., Y. Asakawa, and T. Takemoto: Sesquiterpenes from Japanese Liverworts. Phytochem., 20, 2359 (1981).Google Scholar
  63. 53.
    Asakawa, Y., M. Toyota, and T. Takemoto: Plagiochilide et Plagiochiline A, Secoaromadendrane-Type Sesquiterpenes de la Mousse Plagiochila yokogurensis (Plagiochilaceae). Tetrahedron Letters, 18, 1553 (1978).Google Scholar
  64. 54.
    Asakawa, Y., M. Toyota, and T. Takemoto: La Plagiochiline A et la Plagiochiline B, les Sesquiterpenes du Type Secoaromadendrane de la Mousse Plagiochila hattoriana. Phytochem., 17, 1794 (1978).Google Scholar
  65. 55.
    Matsuo, A., K. Atsumi, M. Nakayama, and S. Hayashi: (+)-Ovalifoliene and (-)Hanegokedial, Two Novel Sesquiterpenoids of the ent-2,3-Secoalloaromadendrane Skeleton from the Liverwort Plagiochila semidecurrens. J. Chem. Soc. Chem. Cornmun., 1010 (1979).Google Scholar
  66. 56.
    Matsuo, A., H. Nozaki, K. Atsumi, H. Kataoka, M. Nakayama, Y. Kushi, and S. Hayashi: (+)-Ovalifolienalone, a Novel Sesquiterpenoid Ketone of the ent-2,3-Secoalloaromadendrane Group from Plagiochila semidecurrens (Liverwort): X-ray Crystal and Molecular Structure. J. Chem. Soc. Chem. Commun., 1012 (1979).Google Scholar
  67. 57.
    Asakawa, Y., M. Toyota, T. Takemoto, and C. Suire: Plagiochilines C, D, E and F, Four Novel Secoaromadendrane-Type Sesquiterpene Hemiacetals from Plagiochila asplenioides and Plagiochila semidecurrens. Phytochem., 18, 1355 (1979).Google Scholar
  68. 58.
    Asakawa, Y., M. Toyota, T. Takemoto, I. Kubo, and K. Nakanishi: Insect Antifeedant Secoaromadendrane-Type Sesquiterpenes from Plagichila species. Phytochem., 19, 2147 (1980).Google Scholar
  69. 59.
    Matsuo, A., K. Atsumi, M. Nakayama, and S. Hayashi: Structures Of ent-2,3-Secoalloaromadendrane Sesquiterpenoids, which have Plant-Growth-Inhibitory Activity, from Plagiochila semidecurrens (Liverwort). J. Chem. Soc., Perkin Trans. 1, 2816 (1981).Google Scholar
  70. 60.
    Fukuyama, Y., and Y. Asakawa: Neurotrophic Secoaromadendrane-Type Sesquiterpenes from the Liverwort Plagiochila fruticosa. Phytochem., 30, 4061 (1991).Google Scholar
  71. 61.(a).
    Matsuo, A., S. Sato, M. Nakayama, and S. Hayashi: Taylorione, a Novel Carbon Skeletal Sesquiterpene Ketone from the Liverwort Mylia taylorii (Hook.) Gray. Tetrahedron Letters, 3681 (1974).Google Scholar
  72. (b).
    Matsuo, A., S. Sato, M. Nakayama, and S. Hayashi: Structure and Absolute Configuration of (-)-Taylorione, a Novel Carbon Skeletal Sesquiterpene Ketone of ent-1,10-Secoaromadendrane Form, from Mylia taylorii (Liverwort).J. Chem. Soc., Perkin Trans. 1, 2652 (1979).Google Scholar
  73. 62.
    Harrison, L.J., and H. Becker: A nor-Secoaromadendrane from the Liverwort Mylia taylorri. Phytochem., 28, 1261 (1989).Google Scholar
  74. 63.(a).
    Benesova, V., P. Sedmera, V. Herout, and F. Sorm: The Structure of a Tetracyclic Sesquiterpenoic Alcohol from Liverwort Mylia taylorii (Hook.) Gray. Tetrahedron Letters, 2679 (1971).Google Scholar
  75. (b).
    Matsuo, A., H. Nozaki, M. Nakayama, Y. Kushi, S. Hayashi, N. Kamijo, V. Benesova, and V. Herout: X-Ray Crystal and Molecular Structure of the p-Bromobenzoate of (-)-Myliol, a Novel Tetracyclic Sesquiterpene Alcohol from Mylia taylorii (Liverwort) Containing Two Conjugated Cyclopropane Rings. Revision of a Proposed Structure. J. Chem. Soc. Chem. Commun., 1006 (1976).Google Scholar
  76. 64.
    Matsuo, A., H. Nozaki, M. Shigemori, M. Nakayama, and S. Hayashi: (-)-Dihydromylione A, a Novel Tetracyclic Sesquiterpene Ketone Containing Two Conjugated Cyclopropane Rings, from Mylia taylorii (Liverwort). Experientia, 33, 991 (1977).Google Scholar
  77. 65.
    Andersen, N.H., Y. Ohta, A. Moore, and C.W. Tseng: Anastreptene, a Commonly Encountered Sesquiterpene of Liverworts (Hepaticae). Tetrahedron, 34, 41 (1978).Google Scholar
  78. 66.
    Takaoka, D., N. Kouyama, H. Tani, and A. Matsuo: Structures of Three Novel Dimeric Sesquiterpenoids from the Liverwort Mylia taylorii. J. Chem. Res. (S), 180 (1991).Google Scholar
  79. 67.
    Spörle, J., H. Becker, N.S. Allen, and M.P. Gupta: Spiroterpenoids from Plagiochila moritziana. Phytochem., 30, 3043 (1991).Google Scholar
  80. 68.
    Weenen, H., M.H.H. Nkunya, Q.A. Mgani, M.A. Posthumus, R. Waibel, and H. Achenbach: Tanzanene, a Spiro Benzopyranyl Sesquiterpene from Uvaria tanzaniae Verdc. J. Organ. Chem., 56, 5865 (1991).Google Scholar
  81. 69.
    Trautmann, D., B. Epe, U.E. Oelbermann, and A. Mondon: Diterpenes from Cneoraceae, I: Constitution and Configuration of Cneorubines. Chem. Ber., 113, 3848 (1980).Google Scholar
  82. 70.(a).
    Amano, T., T. Komiya, M. Hori, and M. Goto: Isolation and Characterization of Euglobals from Eucalyptus globulus Labill. by Preparative Reversed-Phase Liquid Chromatography. J. Chromatogr., 208, 347 (1981).Google Scholar
  83. (b).
    Kozuka, M., T. Sawada, E. Mizuta, F. Kasahara, T. Amano, T. Komiya, and M. Goto: The Granulation-Inhibiting Principles from Eucalyptus globulus Labill, III: The Structures of EuglobalIII, -IVb and -VII. Chem. Pharm. Bull., 30, 1964 (1982).Google Scholar
  84. 71.
    Nishizawa, M., M. Emura, Y. Kan, H. Yamada, K. Ogawa, and N. Hamanaka: Macrocarpals: HIV-Reverse Transcriptase Inhibitors of Eucalyptus globulus. Tetrahedron Letters, 33, 2983 (1992).Google Scholar
  85. 72.
    Murata, M., Y. Yamakoshi, S. Homma, K. Aida, K. Hori, and Y. Ohashi: Macrocarpal A, a Novel Antibacterial Compound from Eucalyptus macrocarpa. Agric. Biol. Chem., 54, 3221 (1990).Google Scholar
  86. 73.
    Yamakoshi, Y., M. Murata, A. Shimizu, and S. Homma: Isolation and Characterization of Macrocarpals B—G, Antibacterial Compounds from Eucalyptus macrocarpa. Biosci. Biotechnol. Biochem., 56, 1570 (1992).Google Scholar
  87. 74.
    Dolejs, L., V. Herout, O. Motl, F. Sorm, and M. Soucek: Epimeric Aromadendrenes: Stereoisomerism of Ledol, Viridiflorol and Globulol. Chem. and Ind., 566 (1959) and references cited.Google Scholar
  88. 75.
    Semmler, F.W., and E. Tobias: Zur Kenntnis der Bestandteile Ätherischer Öle (über Eudesmol und seine Derivate; Notiz über Globulol). Ber. dtsch. chem. Ges., 46, 2030 (1913).Google Scholar
  89. 76.
    Kir’Yalov, N.P.: Principal Components of the Essential Oil of Ledum palustre. Doklady Akad. Nauk (SSSR), 61, 305 (1948) (Chem. Abstr., 43, 1155e (1949)).Google Scholar
  90. 77.
    Jones, T.G.H., and W.L. Haenke: Essential Oils from the Queensland Flora, XI: Melaleuca viridii lora, Part II. Proc. Roy. Soc. Queensland, 49, 95 (1938).Google Scholar
  91. 78.
    Bowyer, R.C., and P.R. Jefferies: Structure of Spathulenol. Chem. and Ind., 1245 (1963).Google Scholar
  92. 79.
    Jenniskens, L.H.D., J.B.P.A. Wijnberg, and AE. De Groot: Base-Induced and -Directed Elimination and Rearrangement of Perhydronaphthalene-1,4-diol Monosulfonate Esters. Total Synthesis of (±)-Alloaromadendrane-4ß,10a-diol and (±)Alloaromadendrane-4a,10a-diol. J. Organ. Chem., 56, 6585 (1991).Google Scholar
  93. 80.(a).
    Cane, D.E.: In: Biosynthesis of Isoprenoid Compounds (Porter, J.W., and S.L. Spurgeon, eds.), Vol. 1, p. 283, John Wiley & Sons, New York, 1981.Google Scholar
  94. (b).
    Manitto, P.: Biosynthesis of Natural Products, p. 238, Ellis Horwood Ltd., Chichester, 1981.Google Scholar
  95. (c).
    Ruzicka, L.: History of the Isoprene Rule. Proc. Chem. Soc. (London), 341 (1959).Google Scholar
  96. (d).
    Hendrickson, J.B.: Stereochemical Implications in Sesquiterpene Biogenesis. Tetrahedron, 7, 82 (1959).Google Scholar
  97. (e).
    Parker, J.W., J.S. Roberts, and R. Ramage: Sesquiterpene Biogenesis. Quart. Rev. (Chem. Soc. London), 31, 331 (1967).Google Scholar
  98. 81.
    Devon, T.K., and A. Scott: Handbook of Naturally Occurring Compounds, Vol. II: Terpenes, p. 56, Academic Press, New York, 1972.Google Scholar
  99. 82.
    Nishimura, K.: A New Sesquiterpene, Bicyclogermacrene. Tetrahedron Letters, 3097 (1969).Google Scholar
  100. 83.
    Matsuo, A., H. Nozaki, N. Kubota, S. Uto, and M. Nakayama: Structures and Conformations of (—)-Isobicyclogermacrenal and (—)-Lepidozenal, Two Key Sesquiterpenoids of the cis-and trans-10,3-Bicyclic Ring Systems, from the Liverwort Lepidozia vitrea: X-Ray Crystal Structure Analysis of the Hydroxy Derivative of (—)Isobicyclogermacrenal. J. Chem. Soc., Perkin Trans. 1, 203 (1984).Google Scholar
  101. 84.
    For example, see refs. no. 31, 81, 92c.Google Scholar
  102. 85.
    For example, see refs, no. 48, 50, 52, and 57.Google Scholar
  103. 86.
    Nishimura, K., I. Horibe, and K. Tori: Conformations of 10-Membered Rings in Bicyclogermacrene and Isobicyclogermacrene. Tetrahedron, 29, 271 (1973).Google Scholar
  104. 87.(a).
    Marshall, J.A., and W.F. Huffman: A New Synthetic Approach to Hydroazulenes. J. Amer. Chem. Soc., 92, 6358 (1970).Google Scholar
  105. (b).
    Concannon, P.W., and J. Ciabattoni: Peroxy Acid Oxidation of Cycloalkynes and the Decomposition of 2-Diazocycloalkanones. J. Amer. Chem. Soc., 95, 3284 (1973).Google Scholar
  106. (c).
    See ref. 97.Google Scholar
  107. 88.(a).
    Rocker, G., R. Mayer, H. Wiedenfeld, B.S. Chung, and A. Güllmann: (+)Isobicyclogermacrenal from Aristolochia manshuriensis. Phytochem., 26, 1529 (1987).Google Scholar
  108. (b).
    Paliwal, M.K., I.R. Siddiqui, S. Singh, H.P. Tiwari: Phytochemical Investigation of Asterella angusta. J. Indian Chem. Soc., 68, 533 (1991).Google Scholar
  109. 89.
    Garson, M.J.: Biosynthesis of the Novel Diterpene Isonitrile Diisocyanoadociane by a Marine Sponge of the Amphimedon Genus: Incorporation Studies with Sodium [14C]Cyanide and Sodium [2–14C]Acetate. J. Chem. Soc., Chem. Commun., 35 (1986).Google Scholar
  110. 90.
    Hagadone, M.R., P.J. Scheuer, and A. Holm: On the Origin of the Isocyano Function in Marine Sponges. J. Amer. Chem. Soc., 106, 2447 (1984).Google Scholar
  111. 91.
    For example, see refs. no. 4, 9, 11, 32, and 123.Google Scholar
  112. 92.
    Katsiotis, S.T., C.R. Langezaal, J.J.C. Scheffer, and R. Verpoorte: Comparative Study of the Essential Oils from Hops of Various Humulus lupulus L. Cultivars. Flavour Fragrance J., 4, 187 (1989).Google Scholar
  113. 93.(a).
    Chalchat, J.C., R.P. Garry, A. Michet, and L. Peyron: Chemical Composition of Natural and Empyreumatic Oils and Extracts from Juniperus oxycedrus and Juniperus phoenicea Wood. J. Essent. Oil Res., 2, 231 (1990).Google Scholar
  114. (b).
    Ji, X., Q. Pu, H.M. Garraffo, and L.K. Pannell: The Essential Oil of the Leaves of Psidium guajava L. J. Essent. Oil Res., 3, 187 (1991).Google Scholar
  115. (c).
    Aalbersberg, W.G.L., and Y. Singh: Essential Oils from Two Medicinal Plants of Fiji: Dysoxylum richii (A. Gray) C.D.C. Fruit and Synedrella nodii lora (L.) Gaertn. Leaves. Flavour Fragrance J., 6, 125 (1991).Google Scholar
  116. (d).
    De Bernardi, M., G. Vidari, P. Vida-Finzi, S. Abdo, G. Marinoni, and G. Mellerio: Medicinal Plant Metabolites, III: GC-MS Analysis of the Essential Oil of Lasiocephalus ovatus. Rev. Latinoam. Quim., 21, 97 (1990).Google Scholar
  117. (e).
    Ji, X., Q. Pu, H.M. Garraffo, and L.K. Pannell: The Essential Oil of the Leaves of Callistemon rigidus R. Br. J. Essent. Oil Res., 3, 465 (1991).Google Scholar
  118. (f).
    Onayade, O.A., J.J.C. Scheffer, and A. Baerheim Svendsen: Polynuclear Aromatic Compounds and Other Constituents of the Herb Essential Oil of Salvia coccinea Juss. ex Murr. Flavour Fragrance J., 6, 281 (1991).Google Scholar
  119. 94.(a).
    Ekundayo, O., I. Laakso, M. Holopainen, R. Hiltunen, B. Oguntimein, and V. Kauppinen: The Chemical Composition and Antimicrobial Activity of the Leaf Oil of Vitex agnus-castus L. J. Essent. Oil Res., 2, 115 (1990).Google Scholar
  120. (b).
    Chalchat, J.C., R.PH. Garry, A. Michet, P. Bastide, and R. Malhuret: Chemical Composition/Antimicrobial Activity Correlation, IV: Comparison of the Activity of Natural and Oxygenated Essential Oils Against Six Strains. Plant. Med. Phytother., 23, 305 (1989).Google Scholar
  121. (c).
    Iwu, M.M., C.O. Ezeugwu, C.O. Okunji, D.R. Sanson, and M.S. Tempesta: Antimicrobial Activity and Terpenoids of the Essential Oil of Hyptis suaveolens. Int. J. Crude Drug Res., 28, 73 (1990).Google Scholar
  122. (d).
    Urzua, A.M., and R.A. Rodriguez: Germination-Inhibiting Terpenes from the Roots of Aristolochia chilensis. Bol. Soc. Chil. Quim., 37, 183 (1992).Google Scholar
  123. 95.
    Tkhu, D.KH., V.I. Roshchin, O.N. Malysheva, and V.A. Solov’Ev: Fungicidal Activity of an Extract from Wood of Taubauma gioi. Khim. Drev., 103 (1987) (Chem. Abstr., 106 99457w (1988)).Google Scholar
  124. 96.
    Hubert, T.D., and D.F. Wiemer: Ant-Repellent Terpenoids from Melampodium divaricatum. Phytochem., 24, 1197 (1985).Google Scholar
  125. 97.
    Gijsen, H.J.M., J.B.P.A. Wijnberg, G.A. Stork, AE. De Groot, M.A. De Waard, and J.G.M. Van Nistelrooy: The Synthesis of Mono-and Dihydroxy Aromadendrane Sesquiterpenes, Starting from Natural (+)-Aromadendrene, III. Tetrahedron, 48, 2465 (1992).Google Scholar
  126. 98.
    Jacyno, J.M., N. Montemurro, A.D. Bates, and H.G. Cutler: Phytotoxic and Antimicrobial Properties of Cyclocolorenone from Magnolia grandiflora L. J. Agric. Food Chem., 39, 1166 (1991).Google Scholar
  127. 99.
    Bolte, M.L., J. Bowers, W.D. Crow, D.M. Paton, A. Sakurai, N. Takahashi, M. Ujiie, and S. Yoshida: Germination Inhibitor from Eucalyptus pulverulenta. Agric. Biol. Chem., 48, 373 (1984).Google Scholar
  128. 100.
    Messer, A., K. Mccormick, Sunjaya, H.H. Hagedorn, F. Tumbel, and J. Mein-Wald: Defensive Role of Tropical Tree Resins: Antitermitic Sesquiterpenes from Southeast Asian Dipterocarpaceae. J. Chem. Ecol., 16, 3333 (1990).Google Scholar
  129. 101.
    Harada, A., K. Sakata, and K. Ina: A New Screening Method for Antifouling Substances Using the Blue Mussel Mytilus edulis L. Agric. Biol. Chem., 48, 641 (1984).Google Scholar
  130. 102.
    Thompson, J.E., R.P. Walker, and D.J. Faulkner: Screening and Bioassays for Biologically Active Substances from Forty Marine Sponge Species from San Diego, California, USA, Mar. Biol. (Berlin), 88, 11 (1985).Google Scholar
  131. 103.
    Asakawa, Y.: Phytochemistry of Hepaticae: Isolation of Biologically Active Aromatic Compounds and Terpenoids. Rev. Latinoamer. Quim., 14, 109 (1984).Google Scholar
  132. 104.
    List, P.H., and L. Hörhammer: Hagers Handbuch der Pharmazeutischen Praxis, 4th Ed., Vol. 5, pp. 479–480, Springer-Verlag, Berlin-Heidelberg-New York, 1976.Google Scholar
  133. 105.
    Fukuyama, Y., and Y. Fukuyama: Nerve Cell Degeneration Reparation Agents Containing Secoaromadendrane-Type Sesquiterpenes and/or Plagiochilide from Plagiochila fruticosa. Jpn. Kokai Tokyo Koho (1991).Google Scholar
  134. 106.
    Murata, M., Y. Yamakoshi, S. Homma, K. Arai, and Y. Nakamura: Macrocarpals, Antibacterial Compounds from Eucalyptus, Inhibit Aldose Reductase. Biosci., Biotechnol., Biochem., 56, 2062 (1992).Google Scholar
  135. 107.
    Ho, T.L.: Carbocycle Construction in Terpene Synthesis, pp. 589–594, VCH Publishers, New York, 1988.Google Scholar
  136. 108.
    Surburg, H., and A. Mondon: Synthesis of (-)-Spathulenol. Chem. Ber., 114, 118 (1981).Google Scholar
  137. 109.
    Barton, D.H.R., P. De Mayo, and M. Shafiq: Photochemical Transformations, Part I: Some Preliminary Investigations. J. Chem. Soc. (London), 929 (1957).Google Scholar
  138. 110.
    Streith, J., and A. Blind: Stereospecific Photochemical Synthesis of Some Aromadendrane Derivatives. Bull. Soc. Chim. Fr., 2133 (1968).Google Scholar
  139. 111.
    Caine, D., and P.F. Ingwalson: The Influence of Substituents on the Photochemical Behavior of Cross-Conjugated Cyclohexadienones. A Facile Total Synthesis of (-)Cyclocolorenone. J. Organ. Chem., 37, 3751 (1972).Google Scholar
  140. 112.
    Caine, D., and J.T. Gupton III: Photochemical Rearrangements of Cross-Conjugated Cyclohexadienones. Application to the Synthesis of (-)-4-Epiglobulol and (+)- 4-Epiaromadendrene. J. Organ. Chem., 40, 809 (1975).Google Scholar
  141. 113.
    Romberger, M.L.: Allylidenecyclopropanes: Their Synthesis via a-Lithiosilanes and Their Synthetic Application. Synthesis of a-Bulnesol and Studies Directed Towards the Synthesis of (+)-Ledene. Dissertation (1989). Avail. Univ. Microfilms Int., Order No. DA9010023. From: Diss. Abstr. Int. B, 50 (11), 5076 (1990).Google Scholar
  142. 114.
    Narang, S.A., and P.C. Dutta: Synthetical Studies of Terpenoids, Part VIII: Synthesis of an Isomer of (+)-Cyclocolorenone. J. Chem. Soc. (London), 1119 (1964).Google Scholar
  143. 115.
    Marshall, J.A., and J.A. Ruth: Synthesis of Racemic Globulol via SolvolysisCyclization of a 2,7-Cyclodecadien-1-ol Derivative. J. Organ. Chem., 39, 1971 (1974).Google Scholar
  144. 116.
    Nakayama, M., S. Ohira, S. Shinke, Y. Matsushita, A. Matsuo, and S. Hayashi: Synthesis of (-)-Taylorione, a Sesquiterpene Ketone of ent-1,10-Secoaromadendrane Skeleton. Chem. Lett., 1245 (1979).Google Scholar
  145. 117.
    Pattenden, G., and D. Whybrow: Synthetic Photochemistry. A Synthesis of the Carbon Skeleton Found in Taylorione from Mylia taylorii, Using the Di-JC-methane Rearrangement. J. Chem. Soc., Perkin Trans. 1, 1046 (1981).Google Scholar
  146. 118.
    Taylor, M.D., G. Minaskanian, K.N. Winzenberg, P. Santone, and A.B. SmithIII: Preparation, Stereochemistry, and Nuclear Magnetic Resonance Spectroscopy of 4-Hydroxy(acetoxy)bicyclo[5.1.0]octanes. Synthesis of (-)- and (±)-8,8-Dimethylbicyclo[5.1.0]oct-2-en-4-one. J. Organ. Chem., 47, 3960 (1982).Google Scholar
  147. 119.
    Taylor, M.D., and A.B. Smith III: Total Synthesis of (+)-Hanegokedial. Tetrahedron Letters, 24, 1867 (1983).Google Scholar
  148. 120.
    Büchi, G., S.W. Chow, T. Matsuura, T.L. Popper, H.H. Rennhard, and M. Schach Von Wittenau: Terpenes, XII: The Constitutions of Aromadendrene, Globulol, Ledol and Viridiflorol. Tetrahedron Letters, 14 (1959).Google Scholar
  149. 121.
    Graham, B.A., P.R. Jefferies, G.J.H. Melrose, K.J.L. Thieberg, and D.E. White: The Stereochemistry of Aromadendrene, Globulol, and Ledol. Austral. J. Chem., 13, 372 (1960).Google Scholar
  150. 122.
    Rienacker, R., and J. Graefe: Catalytic Conversion of Sesquiterpene Hydrocarbons on Alkali Metal/Aluminium Oxide Contacts. Angew. Chem., 97, 348 (1985).Google Scholar
  151. 123.
    Gijsen, H.J.M., and G.A. Stork: Unpublished results.Google Scholar
  152. 124.
    Van Lier, F.P., T.G.M. Hesp, L.M. Van Der Linde, and A.J.A. Van Der Weerdt: First Preparation of (+)-Spathulenol. Regio-and Stereoselective Oxidation of (+)- Aromadendrene with Ozone. Tetrahedron Letters, 26, 2109 (1985).Google Scholar
  153. 125.
    Gijsen, H.J.M., K. Kanai, G.A. Stork, J.B.P.A. Wijnberg, R.V.A. Orru, C.G.J.M. Seelen, S.M. Van Der Kerk, and AE. De Groot: The Conversion of Natural (+)-Aromadendrene into Chiral Synthons, I. Tetrahedron, 46, 7237 (1990).Google Scholar
  154. 126.
    Gijsen, H.J.M., J.B.P.A. Wijnberg, C. Van Ravenswaay, and AE. De Groot: Rearrangement Reactions of Aromadendrane Derivatives. The Synthesis of (+)- Maaliol, Starting from Natural (+)-Aromadendrene, IV. Tetrahedron, 50, 4733 (1994).Google Scholar
  155. 127.
    Gijsen, H.J.M., J.B.P.A. Wijnberg, G.A. Stork, and Ae. De Groot: The Synthesis of (-)-Kessane, Starting from Natural (+)-Aromadendrene, II. Tetrahedron, 47, 4409 (1991).Google Scholar
  156. 128.
    Gijsen, H.J.M., J.B.P.A. Wijnberg, and Ae. De Groot: Thermal Rearrangement of Bicyclogermacrane-1,8-dione. The Synthesis of Humulenedione and (-)-Cubenol, Starting from Natural (+)-Aromadendrene, V. Tetrahedron, 50, 4745 (1994).Google Scholar
  157. 129.
    Abraham, W.R., K. Kieslich, B. Stumpf, and L. Ernst: Microbial Oxidation of Tricyclic Sesquiterpenoids Containing a Dimethylcyclopropane Ring. Phytochem., 31, 3749 (1992).Google Scholar
  158. 130.
    Abraham, W.R., L. Ernst, B. Stumpf, and H.A. Arfmann: Microbial Hydroxylations of Bicyclic and Tricyclic Sesquiterpenes. J. Essent. Oil Res. 1, 19 (1989).Google Scholar
  159. 131.
    Asakawa, Y., T. Ishida, M. Toyota, and T. Takemoto: Terpenoid Biotransformation in Mammals, IV: Biotransformation of (+)-Longifolene, (-)-Caryophyllene, (-)-Caryophyllene oxide, (-)-Cyclocolorenone, (+)-Nootkatone, (-)-Elemol, (-)Abietic Acid and (+)-Dehydroabietic Acid in Rabbits. Xenobiotica, 16, 753 (1986).Google Scholar
  160. 132.
    Ehret, C., and G. Ourisson: Le y-Gurjunene7 Structure et Configuration. Isomerisation de L’a-Gurjunene. Tetrahedron, 25, 1785 (1969).Google Scholar
  161. 133.
    Friedel, H.D., and R. Matusch: Isolation and Structure Elucidation of Epimeric 1(5),6-Guaiadienes from Tolu Balsam. Heiv. Chim. Acta, 70, 1616 (1987).Google Scholar
  162. 134.
    Mehta, G., and B.P. Singh: Terpenes and Related Systems, 16: Fate of Representative Bicyclic Sesquiterpenes in Strong Acid Medium. A General Rearrangement of Hydroazulene Sesquiterpenes to Decalin Types. J. Organ. Chem., 42, 632 (1977).Google Scholar
  163. 135.
    Richardson, D.P., A.C. Messer, B.A. Newton, and N.I. Lindeman: Identification and Preparation of Antiinsectan Dienols from Dipterocarpus kerrii Tree Resins. J. Chem. Ecol., 17, 663 (1991).Google Scholar
  164. 136.
    Treibs, W., and H.M. Barchet: Über bi-und polycyclische Azulene, IV: Das Aromadendren, sein chemischer Bau und seine Überführung in 5-Azulene. Liebigs Ann. Chem., 566, 89 (1950).Google Scholar
  165. 137.
    Takeshita, H., M. Hirama, and S. Ito: Conversion of Gurjunene to 10-Epizierone. Stereochemistry of Zierone. Tetrahedron Letters, 1775 (1972).Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • H. J. M. Gijsen
    • 1
  • J. B. P. A. Wijnberg
    • 1
  • Ae. De Groot
    • 1
  1. 1.Laboratory of Organic ChemistryWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations