Advertisement

Abstract

Some twenty years have passed since Swan reviewed the chemistry of melanins for Vol. 31 of this series (1). Although some of the questions which he aired at that time have remained unanswered, our knowledge and appreciation of the field have increased dramatically in the intervening years (2, 3). Considerable steps forward have been made in practically all areas of melanin research, including the molecular biology of pigment-related genes (4, 5). Concurrent with these advances, research has begun to explore in earnest some fascinating phenomena at the interface between chemistry and biology, such as the origin of skin colour differences in man, the role of melanins in photoprotection and in a variety of genetic and acquired pigmentary disorders that are of great social concern. Some of these alterations are well known and include albinism, vitiligo, mongolian spots and melanoma. The latter is a tumor of the melanin producing cells whose increasing incidence, aggressive behaviour, and resistance to conventional therapeutic regimens represent a challenge to the whole scientific community.

Keywords

Pigment Cell Carboxyl Content Melanin Pigmentation Quinone Methide Pigment Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swan, G.A.: Structure, Chemistry and Biosynthesis of the Melanins. Fortschr. Chem. Organ. Naturstoffe, 31, 522 (1974).Google Scholar
  2. 2.
    Prota, G.: Progress in the Chemistry of Melanins and Related Metabolites. Med. Res. Rev., 8, 525 (1988).Google Scholar
  3. 3.
    Prota, G.: Melanins and Melanogenesis. San Diego: Academic Press. 1992.Google Scholar
  4. 4.
    Hearing, V.J., and K. Tsukamoto: Enzymatic Control of Pigmentation in Mammals. Faseb J., 5, 2902 (1991).Google Scholar
  5. 5.
    Takeuchi, T.: Molecular Structure of the Tyrosinase Gene. In: The Pigment Cell: From the Molecular to the clinical Level ( Y. Mishima, ed.). Copenhagen: Munksgaard. 1992.Google Scholar
  6. 6.
    Rorsman, H., and S. Pavel: Metabolic Markers and Melanoma. In: Cutaneous Melanoma Biology and Management ( N. Cascinelli, M. Santinamiand U. Veronesi, eds.), Milano: Masson. 1990, p. 79.Google Scholar
  7. 7.
    Montagna, W., G. Prota, and J. Kenney: Black Skin. New York: Academic Press. 1993.Google Scholar
  8. 8.
    Lecat, C.N.: TraitA de la Couleur de la Peau Humaine en general, de celle des Nègres en particulier, et de la Metamorphose d’une de ces Couleurs en l’autre, soit de Naissance, Soit accidentellement. Amsterdam: M. M. Rey. 1765.Google Scholar
  9. 9.
    Billingham, R.E., and W.K. Silvers: The Melanocytes of Mammals. Q. Rev. Biol., 35, 1 (1960).Google Scholar
  10. 10.
    Bertrand, G.: Sur une nouvelle oxydase, ou ferment soluble oxydant, d’origine vegetale. Comp. Rend. Acad. Sci. (Paris), 122, 1215 (1996).Google Scholar
  11. 11.
    Robb, D.A.: Tyrosinase. In: Copper Proteins, Vol. 2 ( R. Loutie, ed.), Boca Raton: CRC Press 1984, p. 207.Google Scholar
  12. 12.
    Raper, H.S.: The Aerobic Oxidases. Physiol. Rev., 8, 245 (1928).Google Scholar
  13. 13.
    Raper, H.S.: Some Problems of Tyrosine Metabolism. J. Chem. Soc., 125 (1938).Google Scholar
  14. 14.
    Beer, R.J.S., K. Clarke, H.G. Khorana, and A. Robertson: The Chemistry of the Melanins, Part I: The Synthesis of 5,6-Dihydroxyindole and Related Compounds. J. Chem. Soc., 2223 (1948).Google Scholar
  15. 15.
    Beer, R.J.S., T. Broadhurst, and A. Robertson: The Chemistry of the Melanins, Part V: The Autoxidation of 5,6-Dihydroxyindoles. J. Chem. Soc., 1947 (1954).Google Scholar
  16. 16.
    Mason, H.S.: The Structure of Melanin. In: The Pigmentary System: Advances in Biology of Skin, Vol. 8 ( W. Montagna and F. Hu, eds.), Oxford: Pergamon Press. 1967, p. 293.Google Scholar
  17. 17.
    Nicolaus, R.A.: Melanins. Paris: Hermann. 1968.Google Scholar
  18. 18.
    Blois, M.S.: The Melanins: Their Synthesis and Structure. Photochem. Photobiol. Rev., 3, 115 (1978).Google Scholar
  19. 19.
    QuevedoJr., W.C., T.B. Fitzpatrick, G. Szabo, and K. Jimbow: Biology of the Melanin Pigmentary System. In: Dermatology in General Medicine, Vol. 1 ( T.B. Fitzpatrick, H.S. Eisen, K. Wolff, M. Freedberg, and K.F. Austen, eds.), New York: McGraw-Hill. 1987, p. 224.Google Scholar
  20. 20.
    Jimbow, K., T.B. Fitzpatrick, and M.M. Wick: Biochemistry and Physiology of Melanin Pigmentation. In: Biochemistry and Physiology of Skin, Vol. 2 ( L.A. Goldsmith, ed.), Oxford: Pergamon Press. 1991, p. 873.Google Scholar
  21. 21.
    Fitzpatrick, T.B., P.C.J. Brunet, and A. Kukita: The Nature of Hair Pigment. In: The Biology of Hair Growth ( W. Montagna, ed.), New York: Academic Press. 1958, p. 225.Google Scholar
  22. 22.
    Sorby, H.C.: On the Colouring Matters Found in Human Hair. J. Anthropol. Inst. Lond., 8, 1 (1878).Google Scholar
  23. 23.
    Flesch, P., and S. Rothman: Isolation of an Iron Pigment from Human Red Hair. J. Invest. Dermatol., 6, 257 (1945).Google Scholar
  24. 24.
    Barnicot, N.A.: The Pigment, Trichosiderin, from Human Red Hair. Nature, 77, 528 (1956).Google Scholar
  25. 25.
    Boldt, P.: Zur Kenntnis des Trichosiderins eines Pigments aus roten Haaren. Naturwissenschaften, 51, 265 (1964).Google Scholar
  26. 26.
    Boldt, P., and E. Hermestedt: Pyrrotrichole, eine Gruppe farbiger Verbindungen aus rotem Menschenhaar. Z. Naturforsch., 22B, 718 (1967).Google Scholar
  27. 27.
    Prota, G., and R.A. Nicolaus: Struttura e biogenesi delle feomelanine. Nota I: Isolamento e proprieta’ dei pigmenti delle piume. Gazz. Chim. Ital., 97, 666 (1967).Google Scholar
  28. 28.
    Prota, G., and R.H. Thomson: Melanin Pigmentation in Mammals. Endeavour, 35, 31 (1976).Google Scholar
  29. 29.
    Prota, G.: Melanin and Pigmentation. In: Coenzymes and Cofactors, Vol. 3 ( D. Dolphin, R. Paulson, and O. Abramovic, eds.), New York: Wiley & Sons. 1989, p. 441.Google Scholar
  30. 30.
    Wheeler, M.H., and A.A. Bell: Melanins and Their Importance in Pathogenic Fungi. Curr. Top. Med. Mycol., 7, 338 (1988).Google Scholar
  31. 31.
    Peter, M.G.: Chemical Modification of Biopolymers by Quinones and Quinones Methides. Angew. Chemie Int. Ed. Engl., 28, 555 (1989).Google Scholar
  32. 32.
    Piattelli, M., E. Fattorusso, S. Magno, and R.A. Nicolaus: The Structure of Melanins and Melanogenesis, III: The Structure of Sepiomelanin. Tetrahedron, 19, 2061 (1963).Google Scholar
  33. 33.
    Ito, S., Y. Imai, K. Jimbow, and K. Fujita: Incorporation of Sulfhydryl Compounds into Melanins in vitro. Biochim. Biophys. Acta, 964, 1 (1988).Google Scholar
  34. 34.
    Carstam, R., C. Hansson, C. Lindbladh, H. Rorsman, and E. Rosengren: Dopaquinone Addition Products in Cultured Human Melanoma Cells. Acta Derm. Venereol. (Stockh.), 67, 100 (1987).Google Scholar
  35. 35.
    D’ischia, M., A. Napolitano, and G. Prota: Sulphydryl Compounds in Melanogenesis, Part I: Reaction of Cysteine and Glutathione with 5,6-Dihydroxyindoles. Tetrahedron, 43, 5351 (1987).Google Scholar
  36. 36.
    D’ischia, M., A. Napolitano, and G. Prota: Sulphydryl Compounds in Melanogenesis, Part II: Reactions of Cysteine and Glutathione with Dopachrome. Tetrahedron, 43, 5357 (1987).Google Scholar
  37. 37.
    Bu’lock, J.D., and J. Harley-Mason: Melanin and Its Precursors, Part II: Model Experiments on the Reactions between Quinones and Indole, and Consideration of a Possible Structure for the Melanin Polymer. J. Chem. Soc., 703 (1951).Google Scholar
  38. 38.
    Yasunobu, K.T., E.W. Peterson, and H.S. Mason: The Oxidation of Tyrosine-Containing Peptides by Tyrosinase. J. Biol. Chem., 234, 3291 (1959).Google Scholar
  39. 39.
    Rosei, M.A., L. Mosca, and C. DE Marco: Melanin Production from Enkephalins by Tyrosinase. Biochem. Biophys. Res. Commun., 184, 1190 (1992).Google Scholar
  40. 40.
    Benathan, M., and H. Wyler: Contribution a l’analyse quantitative des melanines. Yale J. Biol. Med., 53, 389 (1980). For details see: Benathan, M.: Ph.D. Thesis, Lausanne University. 1980.Google Scholar
  41. 41.
    Crippa, P.R., V. Horak, G. Prota, P. Svoronos, and L. Wolfram: Chemistry of Melanins. In: The Alkaloids, Vol. 36 ( A. Brossi, ed.), New York: Academic Press. 1989, p. 253.Google Scholar
  42. 42.
    Ito, S.: Reexamination of the Structure of Eumelanin. Biochim. Biophys. Acta, 883, 155 (1986).Google Scholar
  43. 43.
    Clark, M.B.J., J.A.J. Gardella, T.M. Schultz, D.G. Patil, and L.J. Salvati: Solid-State Analysis of Eumelanin Biopolymers by Electron Spectroscopy for Chemical Analysis. Anal. Chem., 62, 949 (1990).Google Scholar
  44. 44.
    Aime, S., M. Fasano, and C. Croombridge: Solid-State Carbon-13 NMR Characterization of Melanin Free Acids from Biosynthetic and Natural Melanins. Gazz. Chim. Ital., 120, 663 (1990).Google Scholar
  45. 45.
    Chedekel, M.R., D.G. Patil, K.V. Rao, B.P. Murphy, M. Clark, J. Gardella, and T.M. Schultz: Solid Phase Carbon-13 NMR of 13C-Enriched Eumelanins: The Fate of the Pyrrolic Ring. Pigment Cell Res., 1, 282 (1988) (Abs.).Google Scholar
  46. 46.
    Swan, G.A., and A. Waggott: Studies Related to the Chemistry of Melanins, Part X: Quantitative Assessment of Different Types of Units Present in Dopa-Melanin. J. Chem. Soc. (C), 1409 (1970).Google Scholar
  47. 47.
    Bu’lock, J.D.: The formation of Melanin from Adrenochrome. J. Chem. Soc., 52 (1961).Google Scholar
  48. 48.
    Corradini, M.G., O. Crescenzi, and G. Prota: A Reinvestigation of the Anaerobic Conversion of Adrenochrome to “Adrenaline Black”. Tetrahedron, 44, 1803 (1988).Google Scholar
  49. 49.
    Sealy, R.C., C.C. Felix, J.S. Hyde, and H.M. Swartz: Structure and Reactivity of Melanins: Influence of Free Radicals and Metal Ions. In: Free Radicals in Biology, Vol. 4 ( W.A. Pryor, ed.), New York: Academic Press. 1980, p. 209.Google Scholar
  50. 50.
    Sarna, T.: Properties and Function of the Ocular Melanin - a Photobiophysical View. J. Photochem. Photobiol. B: Biol (1991).Google Scholar
  51. 51.
    Chedekel, M., A.B. Ahene, and L. Zeise: Melanin Standard Method: Empirical Formula 2. Pigment Cell Res., 5, 240 (1992).Google Scholar
  52. 52.
    Galvao, D.S., and M.J. Caldas: Theoretical Investigation of Model Polymers for Eumelanins, II: Isolated Defects. J. Chem. Phys., 93, 2848 (1990).Google Scholar
  53. 53.
    Galvao, D. S., and M.J. Caldas: Theoretical Investigation of Model Polymers for Eumelanins, I: Finite and Infinite Polymers. J. Chem. Phys., 92, 2630 (1990).Google Scholar
  54. 54.
    Mcginness, J.E., P. Corry, and P. Proctor: Amorphous Semiconductor Switching in Melanins. Science, 183, 853 (1974).Google Scholar
  55. 55.
    Sarna, T., and H.M. Swartz: Interaction of Melanin with Oxygen (and Related Species). In: Atmospheric Oxidation and Antioxidants, Vol 3 ( G. Scott, ed.). Amsterdam. Elsevier. 1991.Google Scholar
  56. 56.
    Korytowski, W., B. Pilas, T. Sarna, and B. Kalyanaraman: Photoinduced Generation of Superoxide Anion and Hydroxyl Radical in Melanins. Photochem. Photobiol., 45, 185 (1987).Google Scholar
  57. 57.
    Nicolaus, R.A., and M. Piattelli, Structure of Melanins and Melanogenesis. J. Pol. Sci., 58, 1133 (1962).Google Scholar
  58. 58.
    Nicolaus, R.A., M. Piattelli, and E. Fattorusso: The Structure of Melanins and Melanogenesis, IV: On Some Natural Melanins. Tetrahedron, 20, 1163 (1964).Google Scholar
  59. 59.
    Zeise, L., and M.R. Chedekel: Melanin Standard Method: Titrimetric Analysis. Pigment Cell Res., 5, 230 (1992).Google Scholar
  60. 59.
    Zeise, L., and M.R. Chedekel: Melanin Standard Method: Titrimetric Analysis. Pigment Cell Res., 5, 230 (1992).Google Scholar
  61. 61.
    Piattelli, M., E. Fattorusso, G.S. Mano, and R.A. Nicolaus: The Structure of Melanins and Melanogenesis, II: Sepiomelanin and Synthetic Pigments. Tetrahedron, 18, 941 (1962).Google Scholar
  62. 62.
    Nicolaus, R.A.: Melanins. In: Methodicum Chimicum, Vol. 11 ( F. Korte and M. Goto, eds.), Georg Thieme, Stuttgart, 1978, p. 190.Google Scholar
  63. 63.
    Binns, F., R.F. Chapman, N.C. Robson, G.A. Swan, and A. Waggott: Studies Related to the Chemistry of Melanins, Part VIII: The Pyrrolecarboxylic Acids formed by Oxidation or Hydrolysis of Melanins Derived from 3,4-Dihydroxyphenylethylamine or DOPA. J. Chem. Soc. (C), 1128 (1970).Google Scholar
  64. 64.
    D’ischia, M., A. Palumbo, and G. Prota: 5,6-Dihydroxyindole-2-carboxylic Acid by Treatment of Sepiomelanin with Sodium Borohydride. Tetrahedron Lett., 26, 2801 (1985).Google Scholar
  65. 65.
    Remers, W.A.: Properties and Reactions of Indoles. In: Indoles, Part 1 ( W.J. Houlihan, ed.), New York: J. Wiley. 1972, p. 152.Google Scholar
  66. 66.
    Cheng, A.C., A.T. Shulgin, and N. CastagnoliJr.: Studies on the Chemical Reactivity on the Quinone Methide Derived from the Oxidative Cyclization of a-Methyl-3,4-dihydroxyphenylalanine Ethyl Ester. J. Org. Chem., 47, 5258 (1985).Google Scholar
  67. 67.
    Crescenzi, O., C. Costantini, and G. Prota: Evidence for the Intermediacy of Quinone-Methides in the Rearrangement of Aminochromes to 5,6-Dihydroxyindoles. Tetrahedron Lett., 42, 6095 (1990).Google Scholar
  68. 68.
    Sugumaran, M., and V. Semensi: Formation of a Stable Quinone Methide During Tyrosinase-Catalyzed Oxidation of Alpha-Methyldopa Methyl Ester and Its Implication in Melanin Biosynthesis. Bioorg. Chem., 18, 144 (1990).Google Scholar
  69. 69.
    Costantini, C., O. Crescenzi, and G. Prota: Mechanism of the Rearrangement of Dopachrome to 5,6-Dihydroxyindole. Tetrahedron Lett., 31, 3849 (1991).Google Scholar
  70. 70.
    Pawelek, J.M.: After Dopachrome? Pigment Cell Res., 4, 53 (1991).Google Scholar
  71. 71.
    Hearing, V.J., T.M. Ekel, P.M. Montague, and J.M. Nicholson: Mammalian Tyrosinase. Stoichiometry and Measurement of Reaction Products. Biochim. Biophys. Acta, 611, 251 (1980).Google Scholar
  72. 72.
    Strays-Mombelli, L., and H. Wyler: Reinvestigation of the Formation of Dopa-Melanin. New Aspects of the Autoxidation of Dopa. In: Pigment Cell Biological Molecular and Clinical Aspects of Pigmentation ( J. Bagnara, S.N. Klaus, E. Paul, M. TypeSchartl, eds.), Tokyo: University of Tokyo Press. 1985, p. 69.Google Scholar
  73. 73.
    Bowness, J.M., R. Morton, M.H. Shakir, and A.L. Stubbs: Distribution of Copper and Zinc in Mammalian Eyes. Occurrence of Metals in Melanin Fractions from Eye Tissues. Biochem. J., 51, 521 (1952).Google Scholar
  74. 74.
    Dorea, J.G., and S.E. Pereira: The Influence of Hair Color on the Concentration of Zinc and Copper in Boys’ Hair. J. Nutrition, 113, 2375 (1983).Google Scholar
  75. 75.
    Molokhia, M., and B. Portnoy: Trace Elements and Skin Pigmentation. Br. J. Dermatol., 89, 207 (1973).Google Scholar
  76. 76.
    Shibata, T., G. Prota, and Y. Mishima: Non-Melanosomal Regulatory Factors in Melanogenesis. J. Invest. Dermatol., 274S (1993).Google Scholar
  77. 77.
    Bu’lock, J.D., and J. Harley-Mason: Melanin and Its Precursors, Part III: New Synthesis of 5,6-Dihydroxyindole and Its Derivatives. J. Chem. Soc., 2248 (1951).Google Scholar
  78. 78.
    Napolitano, A., F. Chioccara, and G. Prota: A Re-Examination of the Zinc-Catalysed Rearrangement of Dopachrome Using Immobilised Tyrosinase. Gazz. Chim. Ital., 115, 357 (1985).Google Scholar
  79. 79.
    Palumbo, A., M. D’ischia, G. Misuraca, and G. Prota: Effect of Metal Ions on the Rearrangement of Dopachrome. Biochim. Biophys. Acta, 925, 203 (1987).Google Scholar
  80. 80.
    Korner, A., and J. Pawelek: Dopachrome Conversion: A Possible Control Point in Melanin Biosynthesis. J. Invest. Dermatol., 75, 192 (1980).Google Scholar
  81. 81.
    Sugumaran, M.: Letter to the Editor. Pigment Cell Res., 5, 203 (1992).Google Scholar
  82. 82.
    Barber, J.I., D. Townsend, D.P. Olds, and R.A. King: Dopachrome Oxidoreductase: A New Enzyme in the Pigment Pathway. J. Invest. Dermatol., 83, 145 (1984).Google Scholar
  83. 83.
    Leonard, L.J., D. Townsend, and R.A. King: Function of Dopachome Oxidoreductase and Metal Ions in Dopachrome Conversion in the Eumelanin Pathway. Biochemistry, 27, 6156 (1988).Google Scholar
  84. 84.
    Pawelek, J.M.: Dopachrome Conversion Factor Functions as an Isomerase. Biochem. Biophys. Res. Commun., 166, 1328 (1990).Google Scholar
  85. 85.
    Aroca, P., J.C. Garcia-Borron, F. Solano, and J.A. Lozano: Regulation of Distal Mammalian Melanogenesis, I: Partial Púrification and Characterization of a Dopa-chrome Converting Factor: Dopachrome Tautomerase. Biochim. Biophys. Acta, 1035, 266 (1990).Google Scholar
  86. 86.
    Dryja, T.P., M. O’neil-Dryja, and D.M. Albert: Elemental Analysis of Melanins from Bovine Hair, Iris, Choroid and Retinal Pigment Epithelium. Invest. Ophthalmol. Vis. Sci., 18, 231 (1979).Google Scholar
  87. 87.
    Palumbo, A., M. D’ischia, G. Misuraca, L. De Martino, and G. Prota: A New Dopachrome-Rearranging Enzyme from the Ejected Ink of the Cuttlefish Sepia officinalis. Biochem. J., 299, 839–844 (1994).Google Scholar
  88. 87.
    Palumbo, A., M. D’ischia, G. Misuraca, L. De Martino, and G. Prota: A New Dopachrome-Rearranging Enzyme from the Ejected Ink of the Cuttlefish Sepia officinalis. Biochem. J., 299, 839–844 (1994).Google Scholar
  89. 89.
    Mason, H.S.: The Chemistry of Melanin, III: Mechanism of the Oxidation of Dihydroxyphenylalanine by Tyrosinase. J. Biol. Chem., 172, 83 (1948).Google Scholar
  90. 90.
    Bu’lock, J.D., and J. Harley-Mason: Melanin and Its Precursors, Part II: Model Experiments on the Reactions Between Quinones and Indole, and Consideration of a Possible Structure for the Melanin Polymer. J. Chem. Soc., 703 (1951).Google Scholar
  91. 91.
    Cromartie, R.I.T., and J. Harley-Mason: Melanin and Its Precursors, Part VII: Synthesis of Methylated 5,6-Dihydroxyindoles, 3-(4,5-Dihydroxy-2-methylphenyl)alanine, and Related Amines. J. Chem. Soc., 3525 (1953).Google Scholar
  92. 92.
    Cromartie, R.I.T., and J. Harley-Mason: Melanin and Its Precursors, Part VIII: The Oxidation of Methylated 5,6-Dihydroxyindoles. Biochem. J., 66, 713 (1957).Google Scholar
  93. 93.
    Beer, R.J.S., T. Broadhurst, and A. Robertson: The Chemistry of the Melanins, Part V: The Autoxidation of 5,6-Dihydroxyindoles. J. Chem. Soc., 1947 (1954).Google Scholar
  94. 94.
    Kirby, G.W., and L. Ogunkoya: Structure of Melanin Derived from (±)-3,4Dihydroxy-(14C,3H)-phenylalanine by Oxidation with Tyrosinase. J. Chem. Soc., Chem. Comm., 21, 546 (1965).Google Scholar
  95. 95.
    Napolitano, A., M.G. Corradini, and G. PROTA: A Reinvestigation of the Structure of Melanochrome. Tetrahedron Lett., 26, 2805 (1985).Google Scholar
  96. 96.
    Corradini, M.G., A. Napolitano, and G. Prota: A Biosynthetic Approach to the Structure of Eumelanins. The Isolation of Oligomers from 5,6-Dihydroxy-1methylindole. Tetrahedron, 42, 2083 (1986).Google Scholar
  97. 97.
    D’ischia, M., A. Napolitano, K. Tsiakas, and G. Prota: New Intermediates in the Oxidative Polymerisation of 5,6-Dihydroxyindole to Melanin Promoted by the Peroxidase/H2O2 System. Tetrahedron, 46, 5789 (1990).Google Scholar
  98. 98.
    D’ischia, M., A. Napolitano, and G. Prota: Peroxidase as an Alternative to Tyrosinase in the Oxidative Polymerization of 5,6-Dihydroxyindoles to Melanin(s). Biochem. Biophys. Acta, 1073, 423 (1991).Google Scholar
  99. 99.
    Land, E.J.: Pulse Irradiation Studies of Some Reactive Intermediates of Melanogenesis. Revs. Chem. Interm., 10, 219 (1988).Google Scholar
  100. 100.
    Al-Kazwini, A.T., P. O’neal, G.E. Adams, R.B. Cundall, G. Lang, and A. Junino: Reactions of Indolic Radicals Produced Upon One-Electron Oxidation of 5,6Dihydroxyindole and Its N(1)-Methylated Analogue. J. Chem. Soc. Perkin Trans. 2, 1941 (1991).Google Scholar
  101. 101.
    Al-Kazwini, A.T., P. O’neal, R.B. Cundall, G.E. Adams, A. Junino, and J. Maignant: Direct Observation of the Reaction of the Quinone Methide from 5,6Dihydroxyindole with the Nucleophilic Azide Ion. Tetrahedron Lett., 33, 3045 (1992).Google Scholar
  102. 102.
    Lambert, C., J.N. Chacon, M.R. Chedekel, E.J. Land, P.A. Riley, A. Thompson, and G. Truscott: A Pulse Radiolysis Investigation of the Oxidation of Indolic Melanin Precursors: Evidence for Indolequinones and Subsequent Intermediates. Biochim. Biophys. Acta, 993, 12 (1989).Google Scholar
  103. 103.
    Ito, S., and J.A.C. Nicol: Isolation of Oligomers of 5,6-Dihydroxyindole-2-carboxylic Acid from the Eye of the Catfish. Biochem. J., 143, 207 (1974).Google Scholar
  104. 104.
    Palumbo, P., M. D’ischia, and G. Prota: Tyrosinase Promoted Oxidation of 5,6Dihydroxyindole-2-carboxylic Acid to Melanin. Isolation and Characterization of Oligomer Intermediates. Tetrahedron, 43, 4203 (1987).Google Scholar
  105. 105.
    Napolitano, A., O. Crescenzi and G. Prota: Copolymerisation of 5,6-Dihydroxyindole and 5,6-Dihydroxyindole-2-carboxylic Acid in Melanogenesis. Isolation of a Cross-Coupling Product. Tetrahedron Lett., 34, 885 (1993).Google Scholar
  106. 106.
    Misuraca, G., G. Prota, J.T. Bagnara, and S.K. Frost: Identification of the Leaf-Frog Melanophore Pigment, Rhodomelanochrome, as Pterorhodanin. Comp. Biochem. Physiol., 57B, 41 (1977).Google Scholar
  107. 107.
    Fox, D.L., and D.M. Uppdegraff: Adenochrome, A Glandular Pigment in Branchial Hearts of the Octopus. Arch. Biochem., 1, 339 (1943).Google Scholar
  108. 108.
    Prota, G.: Nitrogenous Pigments in Marine Invertebrates. In: Marine Natural Products, Vol. 3 (J.P. Scheuer, ed.), p. 141. New York: Academic Press. 1980.Google Scholar
  109. 109.
    Prota, G., G. Scherillo, O. Petrillo, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota X: Sulla struttura delle tricosiderine. Gazz. Chim. Ital., 93, 1193 (1969).Google Scholar
  110. 110.
    Agrup, G., C. Hansson, H. Robsman, A.-M. Rosengren, and E. Rosengren: S-Cysteinuldopa and Trichochromes in Red Feathers. Acta Derm. Venereol. (Stockh.), 58, 269 (1978).Google Scholar
  111. 111.
    Rorsman, H., P. Agrup, B. Carlen, C. Hansson, N. Jonsson, E. Rosengren, and E. Tegner: Trichochromuria in Melanosis of Melanoma. Acta Denn. Venereol. (Stockh.), 66, 468 (1986).Google Scholar
  112. 112.
    Thomson, R.H.: The Pigments of Reddish Hair and Feathers. Angew. Chem. Int. Ed. Engl., 13, 305 (1974).Google Scholar
  113. 113.
    Brown, C., and R.M. Davidson: 1,4-Benzothiazines, Dihydro-1,4-benzothiazines and Related Compounds. In: Advances in Heterocyclic Chemistry, Vol. 38 ( AR. Katritsky, ed.), New York: Academic Press. 1985, p. 135.Google Scholar
  114. 114.
    Nicolaus, R.A., G. Prota, C. Santacroce, G. Scherillo, and D. Sica: Struttura e biogenesi delle feomelanine, Nota VII: Sulla struttura delle tricosiderine. Gazz. Chim. Ital., 99, 323 (1969).Google Scholar
  115. 115.
    Prota, G., A. Suarato, and R.A. Nicolaus: The Isolation and Structure of Trichosiderin B. Experientia, 27, 1381 (1971).Google Scholar
  116. 116.
    Kaul, B.L.: Studies on Heterocyclic Colouring Matters, Part II: A2, 2’-Bi(2H-1,4benzothiazines). Helv. Chim. Acta, 57, 2664 (1974).Google Scholar
  117. 117.
    Prota, G., E. Ponsiglione, and R. Ruggiero: Synthesis and Photochromism of 42,2 Bi-(2H-1,4-benzothiazine). Tetrahedron, 30, 2781 (1974).Google Scholar
  118. 118.
    Minale, L., E. Fattorusso, G. Cimino, S. De Stefano, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota III: Prodotti di degradazione. Gazz. Chim. Ital., 97, 1636 (1967).Google Scholar
  119. 119.
    Deibel, R.B., and M.R. Chedekel: Biosynthetic and Structural Studies on Pheomelanin. J. Am. Chem. Soc., 104, 7306 (1982).Google Scholar
  120. 120.
    Fattorusso, E., L. Minale, S. De Stefano, G. Cimino, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota V: Sulla Struttura della gallofeomelanina-1. Gazz. Chim. Ital., 98, 1443 (1968).Google Scholar
  121. 121.
    Deibel, R.B.: Biosynthetic and Structural studies on Pheomelanin. Ph.D. Thesis. Baltimore, Maryland: The John Hopkins University. 1983.Google Scholar
  122. 122.
    Sealy, R.C., J.S. Hyde, C.C. Felix, I.A. Menon, and G. Prota: Eumelanins and Pheomelanins: Characterization by Electron Spin Resonance Spectroscopy. Science, 217, 545 (1982).Google Scholar
  123. 123.
    Sealy, R.C., J.S. Hide, C.C. Felix, I.A. Menon, G. Prota, H.M. Swartz, S. Persad, and H.F. Haberman: Novel Free Radical in Synthetic and Natural Pheomelanins: Distinction Between Dopa Melanins and Cysteinyldopa Melanins By ESR Spectroscopy. Proc. Natl. Acad. Sci. (USA), 79, 2885 (1982).Google Scholar
  124. 124.
    Patil, D.G., and M.R. Chedekel: Synthesis and Analysis of Pheomelanin Degradation Products. J. Org. Chem., 49, 997 (1984).Google Scholar
  125. 125.
    Fattorusso, E., L. Minale, G. Cimino, S. De Stefano, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota VI: Sulla struttura della gallofeomelanina. Gazz. Chim. Ital., 99, 29 (1969).Google Scholar
  126. 126.
    Fattorusso, E., L. Minale, G. Cimino, S. De Stefano, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota XIII: Sulla struttura della galloeomelanina. Gazz. Chim. Ital., 100, 880 (1970).Google Scholar
  127. 127.
    Minale, L., E. Fattorusso, G. Cimino, S. De Stefano, and R.A. NIcoLAus: Struttura e biogenesi delle feomelanine, Nota VIII: Sulla struttura della gallofeomelanina-1. Gazz. Chim. Ital., 99, 431 (1969).Google Scholar
  128. 128.
    Minale, L., E. Fattorusso, S. De Stefano, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota XI: Uteriori ricerche sulla biogenesi delle feomelanine. Gazz. Chim. Ital., 100, 461 (1970).Google Scholar
  129. 129.
    Fattorusso, E., L. Minale, and G. Sodano: Feomelanine e eumelanine da nuove fonti naturali. Gazz. Chim. Ital., 100, 452 (1970).Google Scholar
  130. 130.
    Ito, S., and K. Fujita: Microanalysis of Eumelanin and Pheomelanin in Hair and Melanosomas by Chemical Degradation and Liquid Chromatography. Anal. Biochem., 144, 527 (1985).Google Scholar
  131. 131.
    Deibel, R.B., and M.R. Chedekel: Biosynthetic and Structural Studies on Pheomelanin, 2. J. Am. Chem. Soc., 106, 5884 (1984).Google Scholar
  132. 132.
    Chedekel, M.R., K.V. Subbarao, P. Bahan, and T.M. Schultz: Biosynthetic and Structural Studies on Pheomelanin. Biochim. Biophys. Acta, 912, 239 (1987).Google Scholar
  133. 133.
    Prota, G., G. Scherillo, E. Napolano, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota II: Sulla reazione tra o-chinoni e cisteina. Gazz. Chim. Ital., 97, 1451 (1967).Google Scholar
  134. 134.
    Prota, G., G. Scherillo, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota IV: Sintesi e proprieta’ della 5-S-cisteinildopa. Gazz. Chim. Ital., 98, 495 (1968).Google Scholar
  135. 135.
    Fattorusso, E., L. Minale, S. De Stefano, G. Cimino, and R.A. Nicolaus: Struttura e biogenesi delle feomelanine, Nota IX: Feomelanine biosintetiche. Gazz. Chim. Ital., 99, 969 (1969).Google Scholar
  136. 136.
    Ito, S., and G. Prota: A Facile One-Step Synthesis of Cysteinyldopas Using Mushroom Tyrosinase. Experientia, 33, 1118 (1977).Google Scholar
  137. 137.
    Bjorklund, A., B. Falck, S. Jacobsson, H. Rorsman, A.-M. Rosengren, and E. Rosengren: Cysteinyldopa in Human Malignant Melanoma. Acta Derm. Venereol. (Stockh), 52, 357 (1972).Google Scholar
  138. 138.
    Rorsman, H., G. Agrup, C. Hansson, A.-M. Rosengren, and E. Rosengren: Detection of Phaeomelanins. In: Pigment Cell: Biologic Basis of Pigmentation, Vol. 4 ( S. Klaus, ed.), Basel: Karger. 1979, p. 244.Google Scholar
  139. 139.
    Prota, G., H. Rorsman, A.-M. Rosengren, and E. Rosengren: Isolation Of 2-SCysteinyldopa and 2,5,-S,S-Dicysteinyldopa from the Urine of Patients with Melanoma. Experientia, 33, 720 (1977).Google Scholar
  140. 140.
    Rorsman, H., G. Agrup, C. Hansson, and E. Rosengren: Biochemical Recorders of Malignant Melanoma. In: Pigment Cell, Vol. 6 ( R.M. Mackie, ed.), Basel: Karger. 1983, p. 93.Google Scholar
  141. 141.
    Ito, S., and J.A.C. Nicol: A New Amino Acid, 3-(2,5-S,S-Dicysteinyl-3,4Dihydroxyphenyl)alanine, from the Tapetum Lucidum of the Gar (Lepisosteidae) and Its Enzymic Synthesis. Biochem. J., 161, 499 (1977).Google Scholar
  142. 142.
    Morishima, T.F., F. Tatsumi, E. Fukada, M. Saito, M. Fujita, N. Nagashima, and S. Hanawa: Cysteinyldopa Isomers and Dopa in Lesions and Urine of Japanese Patients with Malignant Melanoma. Arch. Dermatol. Res., 275, 76 (1983).Google Scholar
  143. 143.
    Meister, A., and M.E. Anderson: Glutathione. Ann. Rev. Biochem., 52, 711 (1983).Google Scholar
  144. 144.
    Prota, G., M. D’ischia, and A. Napolitano: The Regulatory Role of Sulfhydryl Compounds in Melanogenesis. Pigment Cell Res., 1S, 48 (1988).Google Scholar
  145. 145.
    Ito, S., A. Palumbo and G. Prota: Tyrosinase-Catalysed Conjugation of Dopa with Glutathione. Experientia, 41, 960 (1985).Google Scholar
  146. 146.
    Rorsman, H., E. Albertsson, L.E. Edholm, C. Hansson, L. Ogren, and E. Rosengren: Thiols in the Melanocyte. Pigment Cell Res., 1S, 54 (1988).Google Scholar
  147. 147.
    Karg, E., G. Odh, E. Rosengren, A. Wittbjer, and H. Rorsman: Melanin-Related Biochemistry of IGR 1 Human Melanoma Cells. Melanoma Res., 1, 5 (1991).Google Scholar
  148. 148.
    Fehling, C., C. Hansson, J. Poulsen, H. Rorsman, and E. Rosengren: Formation of Glutathionedopa in Albino Rats After DOPA Injection. Acta Derm. Venereol. (Stockh.), 61, 339 (1981).Google Scholar
  149. 149.
    Ito, S., and K. Fujita: New Possible Routes for the Biosynthesis of Cysteinyldopas and Related Metabolites. In: Pigment Cell 1981: Phenotypic Espression in Pigment Cells ( M. Seui, ed.), Tokyo: University of Tokyo Press. 1981, p. 85.Google Scholar
  150. 150.
    Nkpa, N.N., and M. Chedekel: Mechanistic Studies on the Addition of Cysteine to 3,4-Dihydroxyphenylalanine. J. Org. Chem., 46, 213 (1981).Google Scholar
  151. 151.
    Palumbo, A., G. Nardi, M. D’ischia, G. Misuraca, and G. Prota: Non-Enzymic Oxidation of Cysteinyldopa Catalyzed by Metallic Ions. Gen. Pharmacol., 14, 253 (1983).Google Scholar
  152. 152.
    Crescenzi, S., G. Misuraca, E. Novellino, and G. Prota: Reazioni modello per la biosintesi dei pigmenti feomelanici. Chimica e Industria, 57, 392 (1975).Google Scholar
  153. 153.
    Costantini, C., O. Crescenzi, G. Prota, and A. Palumbo: New Intermediates of Phaeomelanogenesis in vitro Beyond the 1,4-Benzothiazine Stage. Tetrahedron, 46, 6831 (1990).Google Scholar
  154. 154.
    Young, T.E., J.R. Oriswold, and M.H. Hulbert: Melanin, 1: Kinetics of Oxidative Cyclization of Dopa to Dopachrome. J. Org. Chem., 39, 1980 (1974).Google Scholar
  155. 155.
    Kalyanaraman, B., C.C. Felix, and R.C. Sealy: Semiquinone Anion Radicals of Catecholamines, Catechol Estrogens, and Their Metal Ion Complexes. Environ. Health Perspect., 64, 185 (1985).Google Scholar
  156. 156.
    Cabanes, J., F. Garcia-Canovas, J.A. Lozano, and F. Garcia-Carmona: A Kinetic Study of the Melanization Pathway Between L-Tyrosine and Dopachrome. Biochim. Biophys. Acta, 923, 187 (1987).Google Scholar
  157. 157.
    Rodriguez-Lopez, J.N., J. Tudela, R. Varon, and F. Garcia-Canovas: Kinetic Study on the Effect of pH on the Melanin Biosynthesis Pathway. Biochim. Biophys. Acta, 1076, 379 (1991).Google Scholar
  158. 158.
    Cleffman, G.: Function-Specific Changes in the Metabolism of Agouti Pigment Cells. Exp. Cell Res., 35, 590 (1964).Google Scholar

Copyright information

© Springer-Verlag/Wien 1995

Authors and Affiliations

  • G. Prota
    • 1
  1. 1.Department of Organic and Biological ChemistryUniversity of NaplesNaplesItaly

Personalised recommendations