Advertisement

The structure of an immunodominant loop on foot and mouth disease virus, serotype O1, determined under reducing conditions

  • D. J. Rowlands
  • D. Logan
  • R. Abu-Ghazaleh
  • W. Blakemore
  • S. Curry
  • T. Jackson
  • A. King
  • S. Lea
  • R. Lewis
  • J. Newman
  • N. Parry
  • D. Stuart
  • E. Fry
Conference paper
Part of the Archives of Virology Supplementum book series (ARCHIVES SUPPL, volume 9)

Summary

Residues 136–159 of VPI of foot and mouth disease virus (FMDV) comprise the G-H loop of the protein and form a prominent feature on the surface of virus particles. This sequence contains an immunodominant neutralizing epitope, which can be mimicked with synthetic peptides, and includes an Arg, Gly, Asp motif which has been implicated in the binding of the virus to cellular receptors. Crystallographic analysis of native virus particles failed to resolve the structure of this region due to its disordered state. However, reduction of a disulphide bond between cysteine residues 134 of VP1 and 130 of VP2 caused the G-H loop to collapse onto the surface of the virus particle and allowed its conformation to be determined.

Keywords

Disulphide Bond Mouth Disease Virus Neutralize Antibody Mouth Disease Virus Cell Receptor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooksby JB (1982) Portraits of viruses: foot and mouth disease virus. Intervirology 18: 1PubMedCrossRefGoogle Scholar
  2. 2.
    Bittle JL, Houghten RA, Alexander H, Schimick TM, Sutcliffe JG, Lerner RA, Rowlands DJ, Brown F (1982) Protection against foot and mouth disease by immunisation with a chemically synthesised peptide predicted from the viral nucleotide sequence. Nature 298: 30–33PubMedCrossRefGoogle Scholar
  3. 3.
    Pfaff E, Mussgay M, Bohm HO, Schalz GE, Schaller H (1982) Antibodies against a preselected peptide recognise and neutralize foot and mouth disease virus. EMBO J 1:869–874PubMedGoogle Scholar
  4. 4.
    Dimarchi R, Brooke G, Gale C, Cracknell V, Doel T, Mowat N (1986) Protection of cattle against foot and mouth disease by a synthetic peptide. Science 232: 639–641PubMedCrossRefGoogle Scholar
  5. 5.
    Brockhuijsen MP, Van Rijn JMM, Blom AJM, Pouwels PH, Enger-Valk BE, Brown F, Francis MJ (1987) Fusion proteins with multiple copies of the major antigenic determinant of foot and mouth disease protect both the natural host and laboratory animals. J Gen Virol 68: 3137–3143CrossRefGoogle Scholar
  6. 6.
    Morgan DO, Moore DM (1990) Protection of cattle and swine against foot and mouth disease using biosynthetic peptide vaccines. Am J Vet Res 51: 40–45PubMedGoogle Scholar
  7. 7.
    Baxt B, Becker Y (1990) The effect of peptides containing the arginine, glycine, aspartic acid sequence on the adsorbtion of foot and mouth disease virus to tissue culture cells. Virus Genes 4: 74–83CrossRefGoogle Scholar
  8. 8.
    Fox G, Parry NR, Barnett PV, McGinn B, Rowlands DJ, Brown F (1989) The cell attachment site on foot and mouth disease virus includes the amino acid sequence RGD ( Arginine-Glycine-Aspartic Acid ). J Gen Virol 70: 625–637Google Scholar
  9. 9.
    Surovoi AY, Ivanov VT, Cherpurkin AV, Ivanyushckenkov VN, Dryagalin NN (1989) Is the Arg-Gly-Asp sequence the binding site of foot and mouth disease virus with the cell receptor? Sov J Bio-Org Chem 14: 572–580Google Scholar
  10. 10.
    Geysen HM, Barteling SJ, Meloen RH (1985) Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc Natl Acad Sci USA 82: 178–182PubMedCrossRefGoogle Scholar
  11. 11.
    Chang KH, Day C, Walker J, Hyypia T, Stanway G (1992) The nucleotide sequences of wild type coxsackie virus strains imply that an RGD motif in VP1 is functionally significant. J Gen Virol 73: 621–626PubMedCrossRefGoogle Scholar
  12. 12.
    Bergelson JM, Shepley MP, Chan BMC, Hemler ME, Finberg RW (1992) Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255: 1718–1720PubMedCrossRefGoogle Scholar
  13. 13.
    Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three- dimensional structure of foot and mouth disease virus at 2.9Å resolution. Nature 327: 709–716CrossRefGoogle Scholar
  14. 14.
    Hogle JM, Chow M, Filman DJ (1985) The three dimensional structure of poliovirus at 2.9A resolution. Science 229: 1358–1365PubMedCrossRefGoogle Scholar
  15. 15.
    Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht H-J, Johnson E, Kramer G, Luo M, Mosser AG, Reuckert RR, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317: 145–153PubMedCrossRefGoogle Scholar
  16. 16.
    Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The atomic structure of Mengovirus at 3.0Å resolution. Science 235: 182–191PubMedCrossRefGoogle Scholar
  17. 17.
    Rossmann MG (1989) The canyon hypothesis. Virol Immunol 2: 143–161CrossRefGoogle Scholar
  18. 18.
    Parry N, Fox G, Rowlands D, Brown F, Fry E, Acharya R, Logan D, Stuart D (1990) Structural and serological evidence for a novel mechanism of antigenic variation in foot and mouth disease virus. Nature 347: 569–572PubMedCrossRefGoogle Scholar
  19. 19.
    Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N, Rowlands D, Stuart D, Fry E (1993) The structure of a major immunogenic site on foot and mouth disease virus. Nature 362: 566–568PubMedCrossRefGoogle Scholar
  20. 20.
    Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer based archival file for macromolecular structures. J Mol Biol 112: 535–542PubMedCrossRefGoogle Scholar
  21. 21.
    Wistow G, Turnell B, Summers L, Slingsby C, Moss D, Miller L, Lindley P, Blundell T (1983) X-ray analysis of the eye lens protein γ-II crystallin at 1.9Å resolution. J Mol Biol 170: 175–202PubMedCrossRefGoogle Scholar
  22. 22.
    Fujinaga M, Delbaere LTJ, Brayer GD, James MNG (1985) Refined structure of α-lytic protease at 1.7Å resolution. Analysis of hydrogen bonding and solvent structure. J Mol Biol 183: 479–502Google Scholar
  23. 23.
    Holmes MA, Matthews BW (1982) Structure of thermolysin refined at 1.6Å resolution. J Mol Biol 160: 623–639PubMedCrossRefGoogle Scholar
  24. 24.
    Kim S, Smith TJ, Chapman MS, Rossmann HG, Pevear DC, Dutko FJ, Felock PJ, Diana GD, McKinlay MA (1989) Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210: 91–111PubMedCrossRefGoogle Scholar
  25. 25.
    Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H (1991) Arg- Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment Pl. FEBS Lett 291: 50–54Google Scholar
  26. 26.
    Reed J, Hull WE, von der Lieth C, Kubler D, Suhai S, Kinzel V (1988) Secondary structure of the Arg-Gly-Asp recognition site in proteins involved in cell-surface adhesion. Evidence for the occurrence of nested β-bends in the model hexapeptide GRGDSP. Eur J Biochem 178: 141–154Google Scholar
  27. 27.
    Saudek V, Atkinson RA, Pelton JT (1991) Three dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 30: 7369–7372PubMedCrossRefGoogle Scholar
  28. 28.
    Adler M, Lazaraus RA, Dennis MS, Wagner G (1991) Solution structure of kistrin, a potent platelet aggregation inhibitor and gp Ilb-IIIa antagonist. Science 253: 445–448PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • D. J. Rowlands
    • 3
  • D. Logan
    • 4
  • R. Abu-Ghazaleh
    • 2
  • W. Blakemore
    • 2
  • S. Curry
    • 2
  • T. Jackson
    • 2
  • A. King
    • 2
  • S. Lea
    • 1
  • R. Lewis
    • 1
  • J. Newman
    • 2
  • N. Parry
    • 3
  • D. Stuart
    • 1
  • E. Fry
    • 1
  1. 1.Laboratory of Molecular BiophysicsUniversity of OxfordOxfordUK
  2. 2.AFRC Institute for Animal HealthSurreyUK
  3. 3.Wellcome Research LaboratoriesBeckenham, KentUK
  4. 4.U.P.R. de Biologie StructuraleI.B.M.C. du C.N.R.S.Strasbourg CedexFrance

Personalised recommendations