Skip to main content

Retroviral RNA packaging: a review

  • Conference paper
Positive-Strand RNA Viruses

Part of the book series: Archives of Virology Supplementum ((ARCHIVES SUPPL,volume 9))

Summary

In retroviruses, the “Gag” or core polyprotein is capable of assembling into virus particles and packaging the genomic RNA of the virus. How this protein recognizes viral RNA is not understood. Gag polyproteins contain a zinc-finger domain; mutants with changes in this domain assemble into virions, but a large fraction of these particles lack viral RNA. Thus, one crucial element in the RNA packaging mechanism is the zinc-finger domain. RNA sequences required for packaging (“packing signals”) have been studied both by deletion analysis and by measuring encapsidation of nonviral mRNAs containing limited insertions of viral sequence. These experiments show that all or part of the packaging signal in viral RNA is located near the 5 end of the genome. These signals appear to be quite large, i.e., hundreds of nucleotides. Each virus particle actually contains a dimer of two identical, + strand genomic RNA molecules. The nature of the dimeric linkage is not understood. In some experimental situations (including zinc-finger mutants), only a small fraction of the particles in a virus preparation contain genomic RNA. It is striking that the genomic RNA packaged in these situations is dimeric. Because of this important observation, it is speculated that only dimers are packaged, and that the dimeric structure is an element of the packaging signal. It is also suggested that the dimers undergo a conformational change (“RNA maturation”) after the virus is released from the cell, and that this change may depend upon the cleavage of the Gag polyprotein, a post-assembly event catalyzed by the virus-coded protease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Linial ML, Miller AD (1990) Retroviral RNA packaging: sequence requirements and implications. In: Swanstrom R, Vogt PK (eds) Retroviruses. Strategies of replication. Springer, Berlin Heidelberg New York Tokyo, pp 125–185

    Google Scholar 

  2. Henderson LE, Copeland TD, Sowder RC, Smythers GW, Oroszlan S (1981) Primary structure of the low-molecular-weight nucleic acid binding proteins of murine leukemia viruses. J Biol Chem 256: 8400–8406

    PubMed  CAS  Google Scholar 

  3. Covey SM (1986) Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res 14: 623–633

    Article  PubMed  CAS  Google Scholar 

  4. Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 59: 103–112

    Google Scholar 

  5. Bess JW Jr, Powell PJ, Issaq HJ, Schumack LJ, Grimes MK, Henderson LE, Arthur LO (1992) Tightly bound zinc in human immunodeficiency virus type 1, human T-cell leukemia virus type I, and other retroviruses. J Virol 66: 840–847

    PubMed  CAS  Google Scholar 

  6. Summers MF, Henderson LE, Chance MR, Bess JW Jr, South TL, Blake PR, Sagi I, Perez-Alvarado G, Sowder RC III, Hare DR, Arthur LO (1992) Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci 1: 563–574

    Article  PubMed  CAS  Google Scholar 

  7. Chance MR, Sagi I, Wirt MD, Frisbie SM, Scheuring E, Chen E, Bess JW Jr, Henderson LE, Arthur LO, South TL, Perez-Alvarado G, Summers MF (1992) Extended x-ray absorption fine structure studies of a retrovirus: equine infectious anemia virus cysteine arrays are coordinated to zinc. Proc Natl Acad Sci USA 89: 10041–10045

    Article  PubMed  CAS  Google Scholar 

  8. Méric C, Spahr P-F (1986) Rous sarcoma virus nucleic acid-binding protein pl2 is necessary for viral 70S RNA dimer formation and packaging. J Virol 60: 450–459

    PubMed  Google Scholar 

  9. Meric C, Gouilloud E, Spahr P-F (1988) Mutations in Rous sarcoma virus nucleocapsid protein pl2 (NC): deletions of Cys-His boxes. J Virol 62: 3328–3333

    PubMed  CAS  Google Scholar 

  10. Gorelick RJ, Henderson LE, Hanser JP, Rein A (1988) Point mutants of Moloney murine leukemia virus that fail to package viral RNA: Evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci USA 85: 8420–8424

    Google Scholar 

  11. Méric C, Goff SP (1989) Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein. J Virol 63: 1558–1568

    PubMed  Google Scholar 

  12. Aldovini A, Young RA (1990) Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64: 1920–1926

    PubMed  CAS  Google Scholar 

  13. Gorelick RJ, Nigida SM Jr, Bess JW Jr, Arthur LO, Henderson LE, Rein A (1990) Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J Virol 64: 3207–3211

    PubMed  CAS  Google Scholar 

  14. Dupraz P, Oertie S, Meric C, Damay P, Spahr P-F (1990) Point mutations in the proximal Cys-His box of Rous sarcoma virus nucleocapsid protein. J Virol 64: 4978–4987

    PubMed  CAS  Google Scholar 

  15. Gorelick RJ, Chabot DJ, Rein A, Henderson LE, Arthur LO (1993) The two zinc fingers in the human immunodificiency virus type 1 nucleocapsid protein are not functionally equivalent. J Virol 67: 4027 — 4036

    PubMed  CAS  Google Scholar 

  16. Gorelick RJ, Nigida SM Jr, Arthur LO, Henderson LE Rein A (1991) Roles of nucleocapsid cysteine arrays in retroviral assembly and replication: possible mechanisms in RNA encapsidation. In: Kumar A (ed) Advances in molecular biology and targeted treatment for AIDS. Plenum Press, New York, pp 257–272

    Google Scholar 

  17. Linial M, Medeiros E, Hayward WS (1978) An avian oncovirus mutant (SE21Qlb) deficient in genomic RNA: biological and biochemical characterization. Cell 15: 1371–1381

    Article  PubMed  CAS  Google Scholar 

  18. Anderson DJ, Lee P, Levine KL, Sang J, Shah SA, Yang OO, Shank PR, Linial ML (1992) Molecular cloning and characterization of the RNA packaging-defective retrovirus SE21Qlb. J Virol 66: 204–216

    PubMed  CAS  Google Scholar 

  19. Fu X, Katz RA, Skalka AM, Leis J (1988) Site-directed mutagenesis of the avian retrovirus nucleocapsid protein pp 12: mutation which affects RNA binding in vitro blocks viral replication. J Biol Chem 263: 2134–2139

    PubMed  CAS  Google Scholar 

  20. Shank PR, Linial M (1980) Avian oncovirus mutant (SE21Qlb) deficient in genomic RNA. Characterization of a deletion in the provirus. J Virol 36: 450–456

    Google Scholar 

  21. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retroviruses. Cell 33: 153–159

    Article  PubMed  CAS  Google Scholar 

  22. Adam MA, Miller AD (1988) Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions. J Virol 62: 3802–3806

    PubMed  CAS  Google Scholar 

  23. Mann R, Baltimore D (1985) Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J Virol 54: 401–407

    PubMed  CAS  Google Scholar 

  24. Sorge JD, Ricci W, Hughes SH (1983) cis-Acting RNA packaging locus in the 115–nucleotide direct repeat of Rous sarcoma virus. J Virol 48: 667–675

    Google Scholar 

  25. Torrent C, Wang P, Darlix J-L (1992) A murine leukemia virus derived retroviral vector with a rat VL30 packaging psi sequence. Bone Marrow Transplant 9 [Suppl 1]: 143–147

    PubMed  Google Scholar 

  26. Murphy JE, Goff SP (1989) Construction and analysis of deletion mutations in the U5 region of Moloney murine leukemia virus: effects on RNA packaging and reverse transcription. J Virol 63: 319–327

    PubMed  CAS  Google Scholar 

  27. Donzé O, Spahr P-F (1992) Role of the open reading frames of Rous sarcoma virus leader RNA in translation and genome packaging. EMBO J 11: 3747–3757

    Google Scholar 

  28. Hayashi T, Shioda T, Iwakura Y, Shibuta H (1992) RNA packaging signal of human immunodeficiency virus type 1. Virology 188: 590–599

    Article  PubMed  CAS  Google Scholar 

  29. Cheung K-S, Smith RE, Stone MP, Joklik WK (1972) Comparison of immature (rapid harvest) and mature Rous sarcoma virus particles. Virology 50: 851–864

    Article  PubMed  CAS  Google Scholar 

  30. Canaani E, Helm KVD, Duesberg P (1973) Evidence for 30-40S RNA as precursor of the 60–70S RNA of Rous sarcoma virus particles. Proc Natl Acad Sci USA 72: 401–405

    Article  Google Scholar 

  31. Korb J, Travnicek M, Riman J (1976) The oncornavirus maturation process: Quantitative correlation between morphological changes and conversion of genomic virion RNA. Intervirology 7: 211-224

    Google Scholar 

  32. Levin JG, Grimley PM, Ramseur JM, Berezesky IK (1974) Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D. J Virol 14: 152–161

    PubMed  CAS  Google Scholar 

  33. Stoltzfus CM, Snyder PN (1975) Structure of B77 sarcoma virus RNA: stabilization of RNA after packaging. J Virol 16: 1161–1170

    PubMed  CAS  Google Scholar 

  34. Prats AC, Roy C, Wang P, Erard M, Housset V, Gabus C, Paoletti C, Darlix J-L (1990) eis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. J Virol 64: 774–783

    Google Scholar 

  35. Bieth E, Gabus C, Darlix JL (1990) A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro. Nucleic Acids Res 18: 119–127

    Article  PubMed  CAS  Google Scholar 

  36. Darlix J-L, Gabus C, Nugeyre M-T, Clavel F, Barre-Sinoussi F (1990) Cis elements and trans acting factors involved in the RNA dimerization of HIV-1. J Mol Biol 216: 689–699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Rein, A. (1994). Retroviral RNA packaging: a review. In: Brinton, M.A., Calisher, C.H., Rueckert, R. (eds) Positive-Strand RNA Viruses. Archives of Virology Supplementum, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9326-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9326-6_49

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82522-8

  • Online ISBN: 978-3-7091-9326-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics