Comparative studies of T = 3 and T = 4 icosahedral RNA insect viruses

  • J. E. Johnson
  • S. Munshi
  • L. Liljas
  • D. Agrawal
  • N. H. Olson
  • V. Reddy
  • A. Fisher
  • B. McKinney
  • T. Schmidt
  • T. S. Baker
Conference paper
Part of the Archives of Virology Supplementum book series (ARCHIVES SUPPL, volume 9)


Crystallographic and molecular biological studies of T = 3 nodaviruses (180 identical subunits in the particle) and T = 4 tetraviruses (240 identical subunits in the particle) have revealed similarity in both the architecture of the particles and the strategy for maturation. The comparative studies provide a novel opportunity to examine an apparent evolution of particle size, from smaller (T = 3) to larger (T = 4), with both particles based on similar subunits. The BBV and FHV nodavirus structures are refined at 2.8 Å and 3 Å respectively, while the NωV structure is at 6 Å resolution. Nevertheless, the detailed comparisons of the noda and tetravirus X-ray electron density maps show that the same type of switching in subunit twofold contacts is used in the T = 3 and T = 4 capsids, although differences must exist between quasi and icosahedral threefold contacts in the T = 4 particle that have not yet been detected. The analyses of primary and tertiary structures of noda and tetraviruses show that NωV subunits undergo a post assembly cleavage like that observed in nodaviruses and that the cleaved 76 C-terminal residues remain associated with the particle.


Coat Protein Capsid Protein Sindbis Virus Icosahedral Symmetry Tomato Bushy Stunt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldbach R (1987) Genome similarities between plant and animal RNA viruses. Microbiol Sci 4: 197–202PubMedGoogle Scholar
  2. 2.
    Rossmann MG, Johnson JE (1989) Icosahedral RNA virus structure. Annu Rev Biochem 58: 533–573PubMedCrossRefGoogle Scholar
  3. 3.
    Rossmann MG, Rueckert RR (1987) What does the molecular structure of viruses tell us about viral functions? Microbiol Sci 4: 206–214PubMedGoogle Scholar
  4. 4.
    Chen Z, Stauffacher C, Li Y, Schmidt T, Bomu W, Kamer G, Shanks M, Lom- onossoff G, Johnson JE (1989) Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245: 154–190PubMedCrossRefGoogle Scholar
  5. 5.
    Hosur MV, Schmidt T, Tucker RC, Johnson JE, Gallagher TM, Selling BH, Rueckert RR (1987) Structure of an insect virus at 3.0 Å resolution. Proteins Struct Funct Genet 2: 167–176PubMedCrossRefGoogle Scholar
  6. 6.
    Prasad BVV (1992) The structure of a calcivirus by cryo-electron microscopy (pers. comm.)Google Scholar
  7. 7.
    Hendry DA (1991) Nodaviridae of invertebrates. In: Kurstak E (ed) Viruses of invertebrates. Marcel Dekker, New York, pp 227–276Google Scholar
  8. 8.
    Moore NF (1991) The Nudaurelia β family of insect viruses. In: Kurstak E (ed) Viruses of invertebrates. Marcel Dekker, New York, pp 277–285Google Scholar
  9. 9.
    Newman JFE, Brown F (1977) Further physicochemical characterization of Nodamura virus. Evidence that the divided genome occurs in a single component. J Gen Virol 38: 83–95Google Scholar
  10. 10.
    Friesen P, Rueckert RR (1981) Synthesis of black beetle virus proteins in cultured Drosophila cells: differential expression of RNAs 1 and 2. J Virol 37: 876–886PubMedGoogle Scholar
  11. 11.
    Newman JFE, Brown F (1973) Evidence for a divided genome in Nodamura virus, an arthropod-borne Picornavirus. J Gen Virol 21: 371–384CrossRefGoogle Scholar
  12. 12.
    Mori K-I, Nakai T, Muroga K, Misao A, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to Nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187: 368–371PubMedCrossRefGoogle Scholar
  13. 13.
    Gallagher TM, Rueckert RR (1988) Assembly dependent maturation cleavage in pro virions of a small icosahedral insect ribovirus. J Virol 62: 3399–3406PubMedGoogle Scholar
  14. 14.
    Dasmahapatra B, Dasgupta R, Saunders K, Selling B, Gallagher T, Kaesberg P (1986) Infectious RNA derived by transcription from cloned cDNA copies of the genomic RNA of an insect virus. Proc Natl Acad Sci USA 83: 63–66PubMedCrossRefGoogle Scholar
  15. 15.
    Schneemann A, Dasgupta R, Johnson JE, Rueckert RR (1993) Use of recombinant baculoviruses in synthesis of morphologically distinct viruslike particles of Flock House virus, a nodavirus. J Virol 67: 2756–2763PubMedGoogle Scholar
  16. 16.
    Schneemann A, Zhong W, Gallagher TM, Rueckert RA (1992) Maturation cleav¬age required for infectivity of a nodavirus. J Virol 66: 6728–6734PubMedGoogle Scholar
  17. 17.
    Fernandez-Tomas CB, Baltimore D (1973) Morphogenesis of poliovirus. J Virol 12: 1122–1130PubMedGoogle Scholar
  18. 18.
    Struthers JK, Hendry DA (1974) Studies of the protein and nucleic acid components of Nudaurelia capensis β virus. J Gen Virol 22: 355–362CrossRefGoogle Scholar
  19. 19.
    du Plessis DH, Mokhosi G, Hendry DA (1991) Cell free translation and identification of the replicative form of Nudaurelia β virus RNA. J Gen Virol 72: 267–273PubMedCrossRefGoogle Scholar
  20. 20.
    Olson NH, Baker TS, Johnson JE, Hendry DA (1990) The three-dimensional structure of frozen hydrated Nudaurelia capensis β virus, a T = 4 insect virus. J Struct Biol 105: 111–122PubMedCrossRefGoogle Scholar
  21. 21.
    Reinganum C (1991) Tetraviridae. In: Adams JR, Bonami JR (eds) Atlas of invertebrate viruses. CRC Press, Boca Raton, pp 387–392Google Scholar
  22. 22.
    Agrawal DK, Johnson JE (1992) Sequence and analysis of the capsid protein of Nudaurelia capensis virus, an insect virus with T = 4 icosahedral symmetry. Virology 190: 806–814PubMedCrossRefGoogle Scholar
  23. 23.
    Caspar DLD, Klug A (1962) Physical principals in the construction of regular viruses. Cold Spring Harbor Symp Quant Biol 27: 1–24PubMedCrossRefGoogle Scholar
  24. 24.
    Johnson JE, Fisher AJ (1993) Principles of virus structure. In: Webster RG, Granoff A (eds) Encyclopedia of virology. Academic Press, London, in pressGoogle Scholar
  25. 25.
    Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 Å resolution. Nature 276: 368–373PubMedCrossRefGoogle Scholar
  26. 26.
    Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AGW, Rayment I, Rossmann MG, Suck D, Tomitake T (1980) Structure of southern bean mosaic virus at 2.8 Å resolution. Nature 286: 33–39PubMedCrossRefGoogle Scholar
  27. 27.
    Williams R (1979) The geometrical foundation of natural structure. Dover, New YorkGoogle Scholar
  28. 28.
    Fisher AJ, Johnson JE (1992) Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361: 176–179CrossRefGoogle Scholar
  29. 29.
    von Bonsdorff C, Harrison S (1975) Sindbis virus glycoproteins form a regular icosahedral surface lattice. J Virol 16: 141–145Google Scholar
  30. 30.
    Choi H-K, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G (1991) Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354: 37–43PubMedCrossRefGoogle Scholar
  31. 31.
    Finch JT, Crowther RA, Hendry DA, Struthers JK (1974) The structure of Nudaurelia capensis β virus: the first example of a capsid with icosahedral surface symmetry T = 4. J Gen Virol 24: 191–200PubMedCrossRefGoogle Scholar
  32. 32.
    Sehnke P, Harrington M, HosurM, Li Y, Usha R, Tucker R, BomuW, Stauffacher C, Johnson J (1988) Crystallization of viruses and virus proteins. J Crystal Growth 90: 222–230. 35Google Scholar
  33. 33.
    Cavarelli J, Bomu W, Liljas L, Kim S, Minor W, Munshi S, Muchmore S, Schmidt T, Johnson J (1991) Crystallization and preliminary structure analysis of an insect virus with T=4 quasi-symmetry: Nudaurelia capensis virus. Acta Crystallogr B47: 23–29CrossRefGoogle Scholar
  34. 34.
    Fisher A, McKinney B, Schneeman A, Rueckert RR, Johnson JE (1993) Crystallization of virus-like particles assembled from Flock House virus coat protein expressed in a baculovirus system. J Virology 67: 2950–2953PubMedGoogle Scholar
  35. 35.
    Zlotnick A, Reddy V, Schneemann A, Dasgupta R, Rueckert R, Johnson J (1993) A buried aspartic acid catalyzes autoproteolytic maturation in a family of insect viruses (in prep. )Google Scholar
  36. 36.
    Olson N, Baker T (1989) Magnification calibration and the determination of spherical virus diameters using cryo-microscopy. Ultramicroscopy 30: 281–298PubMedCrossRefGoogle Scholar
  37. 37.
    Crowther R, DeRosier D, Klug A (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Porch Roe Soc Loaned A317: 319–340CrossRefGoogle Scholar
  38. 38.
    Fuller S (1987) The T = 4 envelope of Sindbis virus is organized by interaction with a complimentary T = 3 capsid. Cell 48: 923–934PubMedCrossRefGoogle Scholar
  39. 39.
    Baker T, Drak J, Bina M (1988) Reconstruction of the three dimensional structure of Simian virus 40 and visualization of the chromatin core. Proc Natl Acad Sci USA 422–426Google Scholar
  40. 40.
    Franks A (1955) An optically focusing X-ray diffraction camera. Proc Phys Soe Sect B 68: 1054–1064CrossRefGoogle Scholar
  41. 41.
    Harrison S (1968) A point focusing camera for single crystal diffraction. J Appl Crystallogr 1: 84–90CrossRefGoogle Scholar
  42. 42.
    Schmidt T, Johnson J, Phillips W (1983) The spherically averaged structures of cowpea mosaic virus components by X-ray solution scattering. Virology 127: 65–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. E. Johnson
    • 1
  • S. Munshi
    • 1
  • L. Liljas
    • 1
  • D. Agrawal
    • 1
  • N. H. Olson
    • 1
  • V. Reddy
    • 1
  • A. Fisher
    • 1
  • B. McKinney
    • 1
  • T. Schmidt
    • 1
  • T. S. Baker
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations