Cell surface receptor for ecotropic host-range mouse retroviruses: a cationic amino acid transporter

  • M. P. Kavanaugh
  • H. Wang
  • C. A. R. Boyd
  • R. A. North
  • D. Kabat
Conference paper
Part of the Archives of Virology Supplementum book series (ARCHIVES SUPPL, volume 9)


The cell surface receptor for ecotropic host-range murine leukemia viruses is a sodium-independent transporter for essential cationic acids. Our evidence strongly identifies this receptor as the transporter system y+, which was previously characterized by transport assays. Mutational analysis indicates that transporter activity is not necessary for viral reception. Infection of cells with ecotropic retroviruses causes only a partial down-modulation of receptor expression on cell surfaces.


Basic Amino Acid Extracellular Loop Cationic Amino Acid Transporter Transmembrane Sequence Human Coronavirus 229E 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Williams RK, Jiang GS, Holmes KV (1991) Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci USA 88: 5533–5536PubMedCrossRefGoogle Scholar
  2. 2.
    Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348PubMedCrossRefGoogle Scholar
  3. 3.
    Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McLelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56: 839–847PubMedCrossRefGoogle Scholar
  4. 4.
    Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56: 849–853PubMedCrossRefGoogle Scholar
  5. 5.
    Tomassini JE, Graham D, DeWitt CM, Lineberger DW, Rodkey JA, Colonno RJ (1989) cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule I. Proc Natl Acad Sei USA 86: 4907–4911Google Scholar
  6. 6.
    Wang KS, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 66: 4992–5001PubMedGoogle Scholar
  7. 7.
    Moore MD, Cooper NR, Tack BF, Nemerow GR (1987) Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes. Proc Natl Acad Sci USA 84: 9194–9198PubMedCrossRefGoogle Scholar
  8. 8.
    Delmas B, Geli J, L’Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H (1992) Aminopeptidase N is a major receptor for the entero-pathogenic Coronavirus TGEV. Nature 357: 417–419Google Scholar
  9. 9.
    Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV (1992) Human aminopeptidase N is a receptor for human Coronavirus 229E. Nature 357: 420–422Google Scholar
  10. 10.
    Johann SV, Gibbons JJ, O’Hara B (1992) GLVR1, a receptor for Gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol 66: 1635–1640PubMedGoogle Scholar
  11. 11.
    Albitton CM, Tseng L, Scadder D, Cunningham JM (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57: 659–666CrossRefGoogle Scholar
  12. 12.
    Kim JW, Closs EI, Albritton LM, Cunningham JM (1991) Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352: 725–728PubMedCrossRefGoogle Scholar
  13. 13.
    Wang H, Kavanaugh MP, North RA, Kabat D (1991) Cell surface receptor for ecotropic murine retroviruses is a basic amino acid transporter. Nature 352: 729– 731Google Scholar
  14. 14.
    Vile RG, Weiss RA (1991) Virus receptors as permeases. Nature 352: 666–667PubMedCrossRefGoogle Scholar
  15. 15.
    Albritton, LM, Kim, JW, Tseng, L, Cunningham, JM (1993) Envelope binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retrovirues. J Virol 67: 2091–2096PubMedGoogle Scholar
  16. 16.
    Weber E, Chevlier M, Jund R (1988) Evolutionary relationships and secondary structure predictions in four transport proteins of Saccharomyces cerevisiae. J Mol Evol 27: 341–350PubMedCrossRefGoogle Scholar
  17. 17.
    Durell SR, Guy HR (1992) Atomic scale structure and functional models of voltage-gated potassium channels. Biophys J 62: 238–245PubMedCrossRefGoogle Scholar
  18. 18.
    White MF (1985) The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim Biophys Acta 822: 355–374PubMedGoogle Scholar
  19. 19.
    Kavanaugh MP (1993) Voltage-dependence of arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry (submitted)Google Scholar
  20. 20.
    Taglialatella M, Toro L, Stefani E (1992) Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys J 61: 78–82CrossRefGoogle Scholar
  21. 21.
    Weiss RA (1992) Cellular receptors and viral glycoproteins involved in retrovirus entry. In: Levy JA (ed) The retroviruses. Plenum Press, New YorkGoogle Scholar
  22. 22.
    Kabat D (1989) Molecular biology of Friend viral erythroleukemia. Curr Top Microbiol Imunol 148: 1–42CrossRefGoogle Scholar
  23. 23.
    Wang H, Dechant E, Kavanaugh MP, North RA, Kabat D (1992) Effects of ecotropic murine retroviruses on the dual-function cell surface receptor/basic amino acid transporter. J Biol Chem 267: 23617–23624PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. P. Kavanaugh
    • 2
  • H. Wang
    • 1
  • C. A. R. Boyd
    • 3
  • R. A. North
    • 2
  • D. Kabat
    • 1
  1. 1.Department of Biochemistry and Molecular Biology School of MedicineUSA
  2. 2.Vollum Institute for Advanced Biomedical Research Oregon Health SciencesUniversity PortlandUSA
  3. 3.Department of Human Anatomy University of OxfordOxfordUK

Personalised recommendations