Advertisement

Assembly and entry mechamisms of Semliki Forest virus

  • H. Garoff
  • J. Wilschut
  • P. Liljeström
  • J. M. Wahlberg
  • R. Bron
  • M. Suomalainen
  • J. Smyth
  • A. Salminen
  • B. U. Barth
  • H. Zhao
  • K. Forsell
  • M. Ekström
Part of the Archives of Virology Supplementum book series (ARCHIVES SUPPL, volume 9)

Summary

The alphavirus Semliki Forest (SFV) is an enveloped virus with a positive single-stranded RNA genome. The genome is complexed with 240 copies of a capsid protein into a nucleocapsid structure. In the membrane the virus carries an equal number of copies of a membrane protein heterodimer. The latter oligomers are grouped into clusters of three. These structures form the spikes of the virus and carry its entry functions, that is receptor binding and membrane fusion activity. The membrane protein heterodimer is synthesized as a p62E1 precursor protein which upon transport to the cell surface is cleaved into the mature E2E1 form. Recent studies have given much new information on the assembly and entry mechanism of this simple RNA virus. Much of this work has been possible through the construction of a complete cDNA clone of the SFV genome which can be used for in vitro transcription of infectious RNA. One important finding has been to show that a spike deletion variant and a capsid protein deletion variant are budding-negative when expressed separately but can easily complement each other when transfected into the same cell. This shows clearly that enveloped viruses use different budding strategies: one which depends on a nucleocapsid-spike interaction as exemplified by SFV and another one which is based on a direct core-lipid bilayer interaction as shown before to be the case with retroviruses. Another important finding concerns the activation process of the presumed fusion protein of SFV, the E1 subunit. In the original p62E1 heterodimer E1 is completely inactive. Activation proceeds in several steps. First p62 cleavage activates the potential for low pH inducible fusion. Next the low pH which surrounds incoming virus in endosomes induces dissociation of the heterodimeric structure. This is followed by a rearrangement of E1 subunits into homotrimers which are fusion active.

Keywords

Membrane Fusion Virus Assembly Semliki Forest Virus Fusion Activity Sindbis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson RGW, Orci L (1988) A view of acidic intracellular compartments. J Cell Biol 106: 539–543PubMedCrossRefGoogle Scholar
  2. 2.
    Barth B-U, Suomalainen M, Liljestrom P, Garoff H (1992) Alphavirus assembly and entry: The role of the cytoplasmic tail of the El spike subunit. J Virol 66: 7560–7564PubMedGoogle Scholar
  3. 3.
    Birnbaum F, Nassal M (1990) Hepatitis B virus nucleocapsid assembly: Primary structure requirements in the core protein. J Virol 64: 3319–3330PubMedGoogle Scholar
  4. 4.
    Bron R, Wahlberg JM, Garoff H, Wilschut J (1993) Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO J 12:693–701Google Scholar
  5. 5.
    Choi H-K, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G (1991) Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354: 37–43PubMedCrossRefGoogle Scholar
  6. 6.
    de Curtis I, Simons K (1988) Dissection of Semliki Forest virus glycoprotein delivery from the trans-Golgi network to the cell surface in permeabilized BHK cells. Proc Natl Acad Sci USA 85: 8052–8056PubMedCrossRefGoogle Scholar
  7. 7.
    Garoff H, Kondor-Koch C, Riedel H (1982) Structure and assembly of alpha- viruses. Curr Top Microbiol Immunol 99: 1–50PubMedCrossRefGoogle Scholar
  8. 8.
    Garoff H, Simons K (1974) Location of the spike glycoproteins in the Semliki Forest virus membrane. Proc Natl Acad Sci USA 71: 3988–3992PubMedCrossRefGoogle Scholar
  9. 9.
    Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, De Wilde M (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant Baculovirus-infected cells. Cell 59: 103–112PubMedCrossRefGoogle Scholar
  10. 10.
    Harter C, James P, Bächi T, Semenza G, Brunner J (1989) Hydrohobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the fusion peptide. J Biol Chem 264: 6459–6464PubMedGoogle Scholar
  11. 11.
    Helenius A, Kartenbeck J (1980) The effects of octylglucoside on the Semliki Forest virus membrane. Evidence for spike protein-nucleocapsid interaction. Eur J Biochem 106: 613–618PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson DC, Schlesinger MJ (1981) Fluorescence photobleaching recovery measurements reveal differences in envelopment of Sindbis and vesicular stomatitis viruses. Cell 23: 423–431PubMedCrossRefGoogle Scholar
  13. 13.
    Kielian M, Helenius A (1985) pH-induced alterations in the fusogenic spike protein of Semliki Forest virus. J Cell Biol 101: 2284–91CrossRefGoogle Scholar
  14. 14.
    Liljeström P, Lusa S, Huylebroeck D, Garoff H (1991) In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the 6 000-molecular-weight membrane protein modulates virus release. J Virol 65: 4107–4113PubMedGoogle Scholar
  15. 15.
    Lusa S, Garoff H, Liljeström P (1991) Fate of the 6K membrane protein of Semliki Forest virus during virus assembly. Virology 185: 843–846PubMedCrossRefGoogle Scholar
  16. 16.
    Mash M, Wellsteed J, Kern H, Harms E, Helenius A (1982) Monensin inhibits Semliki Forest virus penetration into culture cells. Proc Natl Acad Sci USA 79: 5297–5301CrossRefGoogle Scholar
  17. 17.
    Metsikkö K, Garoff H (1990) Oligomers of the cytoplasmic domain of the p62/E2 membrane protein of Semliki Forest virus bind to the nucleocapsid in vitro. J Virol 64: 4678–4683PubMedGoogle Scholar
  18. 18.
    Phalen T, Kielian M (1991) Cholesterol is required for infection by Semliki Forest virus. J Cell Biol 112: 615–623PubMedCrossRefGoogle Scholar
  19. 19.
    Salminen A, Wahlberg JM, Lobigs M, Liljeström P, Garoff H (1992) Membrane fusion process of Semliki Forest virus II: Cleavage dependent reorganization of the spike protein complex controls virus entry. J Cell Biol 116: 349–357PubMedCrossRefGoogle Scholar
  20. 20.
    Stegmann T, White JM, Helenius A (1990) Intermediates in influenza membrane fusion. EMBO J 9:4231–4241Google Scholar
  21. 21.
    Suomalainen M, Garoff H (1992) Alphavirus spike-nuclecapsid interaction and network antibodies. J Virol 66: 5106–5109PubMedGoogle Scholar
  22. 22.
    Suomalainen M, Liljeström P, Garoff H (1992) Spike protein-nucleocapsid interactions drive the budding of alphaviruses. J Virol 66: 4737–4747PubMedGoogle Scholar
  23. 23.
    Vaux DJT, Helenius A, Mellman I (1988) Spike-nucleocapsid interaction in Semliki Forest virus reconstructed using network antibodies. Nature 336: 36–42PubMedCrossRefGoogle Scholar
  24. 24.
    Wahlberg J, Garoff H (1992) Membrane fusion process of Semliki Forest virus I: Low pH-induced rearrangement in spike protein quaternary structure preceeds virus penetration into cells. J Cell Biol 116: 339–348PubMedCrossRefGoogle Scholar
  25. 25.
    Wahlberg JM, Boere WA, Garoff H (1989) The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to mildly acidic pH during virus maturation. J Virol 63: 4991–4997PubMedGoogle Scholar
  26. 26.
    Wahlberg JM, Bron R, Wilschut J, Garoff H (1992) Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J Virol 66: 7309–7318PubMedGoogle Scholar
  27. 27.
    Wang K-S, Kuhn RJ, Strauss EG, Ou S, Strauss JH (1992) High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 66: 4992–5001PubMedGoogle Scholar
  28. 28.
    Weiss B, Nitschko H, Ghattas I, Wright R, Schlesinger S (1989) Evidence for specificity in the encapsidation of Sindbis virus RNAs. J Virol 63: 5310–5318PubMedGoogle Scholar
  29. 29.
    Wengler G, Boege U, Wengler G, Bischoff H, Wahn KI (1982) The core protein of the alphavirus Sindbis virus assembles into core-like nucleoproteins with the viral genome RNA and with other single-stranded nucleic acids in vitro. Virology 118: 401–410PubMedCrossRefGoogle Scholar
  30. 30.
    White J, Helenius A (1980) pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci USA 77: 3273–3277PubMedCrossRefGoogle Scholar
  31. 31.
    White JM, Wilson IA (1987) Anti-peptide antibodies detect steps in a protein conformational change: low pH-activation of the influenza virus hemagglutinin. J Virol 105: 2887–2896Google Scholar
  32. 32.
    Wills JW, Craven RC, Weldon RA Jr, Nelle TD, Erdie CR (1991) Suppression of retroviral MA deletions by the amino-terminal membrane-binding domain of p60src. J Virol 65: 3804–3812PubMedGoogle Scholar
  33. 33.
    Zhao H, Garoff H (1992) The role of cell surface spikes for alphavirus budding. J Virol 66: 7089–7095PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. Garoff
    • 1
  • J. Wilschut
    • 2
  • P. Liljeström
    • 1
  • J. M. Wahlberg
    • 1
  • R. Bron
    • 2
  • M. Suomalainen
    • 1
  • J. Smyth
    • 1
  • A. Salminen
    • 1
  • B. U. Barth
    • 1
  • H. Zhao
    • 1
  • K. Forsell
    • 1
  • M. Ekström
    • 1
  1. 1.Department of Molecular BiologyNovumHuddingeSweden
  2. 2.Department of Physiological ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations