Advertisement

Identification and characterization of host factor interactions with cis-acting elements of rubella virus RNA

  • H. L. Nakhasi
  • N. K. Singh
  • G. P. Pogue
  • X.-Q. Cao
  • T. A. Rouault
Conference paper
Part of the Archives of Virology Supplementum book series (ARCHIVES SUPPL, volume 9)

Summary

We have analyzed the function of cis-acting elements of rubella virus RNA and the components which interact with these elements in viral RNA replication. We demonstrated that the 5′- and 3′-terminal sequences from RV RNA promote translation and negative- strand RNA synthesis of chimeric chloramphenicol acetyltransferase (CAT) RNAs. These sequences have a potential to form stem-loop (SL) structures and bind cellular proteins specifically in RNA gel-shift and UV cross-linking assays. The 5’ end binding proteins were identified to be Ro/SSA-associated antigens by virtue of being recognized in an RNA complex by an autoimmune patient serum with Ro antigen type specificity. Purification and sequence analysis of the 3’ end binding protein revealed that it is a homologue of human calreticulin. The role of host proteins in RV replication is discussed.

Keywords

Rubella Virus Primer Extension Product Conserve Sequence Element Chimeric RNAs Adenovirus Major Late Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper LZ, Buimovici-Klein E (1985) Rubella. In: Fields BN, Knipe DM, Chanock RM, Melnick JL, Roizman B, Shope RE (eds) Virology. Raven Press, New York, pp 1005–1020Google Scholar
  2. 2.
    Deutscher SL, Harley JB, Keene JD (1988) Molecular analysis of the 60-kDa human Ro bibonucleoprotein. Proc Natl Acad Sci USA 85: 9479–9483PubMedCrossRefGoogle Scholar
  3. 3.
    Dominguez G, Wang C-Y, Frey TK (1990) Sequence of the genome RNA of rubella virus: evidence for genetic rearrangement during togavirus evolution. Virology 177: 225–238PubMedCrossRefGoogle Scholar
  4. 4.
    Jang SK, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4: 1560–1572PubMedCrossRefGoogle Scholar
  5. 5.
    McCauliffe DP, Lux FA, Lieu T-S, Sanz I, Hanke J, Newkirk MM, Bachinski LL, Itoh Y, Siciliano MJ, Reichlin M, Sontheimer RD, Capra JD (1990) Molecular cloning, expression, chromosome 19 localization of a human Ro/SS-A autoantigen. J Clin Invest 85: 1379–1391PubMedCrossRefGoogle Scholar
  6. 6.
    Meerovitch K, Pelletier J, Sonenberg N (1989) A cellular protein that binds to the 5’-noncoding region of polio virus RNA: implications for internal translation initiation. Genes Dev 3: 1026–1034PubMedCrossRefGoogle Scholar
  7. 7.
    Michalak M, Milner RE, Burns K, Opas M (1992) Calreticulin. Biochem J 285: 681–692Google Scholar
  8. 8.
    Nakhasi HL, Rouault TA, Haile D, Liu T-Y, Klausner RD (1990) Specific high- affinity binding of host cell proteins to the 3′ region of rubella virus RNA. New Biol 2: 255–264PubMedGoogle Scholar
  9. 9.
    Nakhasi HL, Cao X-Q, Rouault TA, Liu T-Y (1991) Specific binding of host cell proteins to the 3’-terminal stem-loop structure of rubella virus negative-strand RNA. J Virol 65: 5961–5967PubMedGoogle Scholar
  10. 10.
    Najita L, Sarnow P (1990) Oxidation-reduction sensitive interaction of a cellular 50kDa protein with an RNA hairpin in the 5’ noncoding region of the poliovirus genome. Proc Natl Acad Sci USA 87: 5846–5850PubMedCrossRefGoogle Scholar
  11. 11.
    Oker-Blom C, Ulmanen I, Kaariainen L, Pettersson R (1984) Rubella virus 40S genomic RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins. J Virol 49: 403–408PubMedGoogle Scholar
  12. 12.
    Pardigon N, Strauss JH (1992) Cellular proteins bind to the 3’ end of Sindbis virus minus-strand RNA. J Virol 66: 1007–1015PubMedGoogle Scholar
  13. 13.
    Pogue GP, Cao X-Q, Singh NK, Nakhasi HL (1993) 5’ sequences of Rubella virus RNA stimulate translation of chimeric RNAs and specifically interact with host- encoded proteins. J Virol 67 (in press)Google Scholar
  14. 14.
    Singh NK, Rouault TA, Liu T-Y, Nakhasi HL (1993) Purification and characterization of rubella virus 3’(+) SL RNA-binding host protein (in preparation)Google Scholar
  15. 15.
    Strauss JH, Kuhn RJ, Niesters HGM, Strauss E (1990) Functions of the 5’-terminal and 3’-terminal sequences of the Sindbis virus genome in replication. In: Brinton MA, Heinz FX (eds) New aspects of positive-strand RNA viruses. Am Soc Micro, Washington, pp 61–66Google Scholar
  16. 16.
    Tan EM (1982) Autoantibodies to nuclear antigens (ANA): their immunobiology and medicine. Adv Immunol 33: 167–177PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. L. Nakhasi
    • 1
  • N. K. Singh
    • 1
  • G. P. Pogue
    • 1
  • X.-Q. Cao
    • 1
  • T. A. Rouault
    • 2
  1. 1.Division of Hematologic Products, CBER, Food and Drug AdministrationNational Institutes of HealthBethesdaUSA
  2. 2.Cell Biology and Metabolism Branch, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations