Skip to main content

Common replication strategies emerging from the study of diverse groups of positive-strand RNA viruses

  • Conference paper
Positive-Strand RNA Viruses

Part of the book series: Archives of Virology Supplementum ((ARCHIVES SUPPL,volume 9))

Summary

Studies using brome mosaic virus (BMV), Sindbis virus and poliovirus have provided evidence that disparate groups of plant and animal positive strand RNA viruses have remarkably similar replication strategies. The conservation of several functional domains within virus- encoded nonstructural proteins implies that, although the precise character of these and interacting host components varies for each virus, they employ similar mechanisms for RNA replication. For (+) strand replication, similarities in cis-acting sequence motifs and RNA secondary structures within 5′ termini of genomic (+) strands have been identified and have been shown to participate in binding of host factors. The model presented for replication of BMV RNA suggests that binding of these factors to internal control region (ICR) sequence motifs in the double- stranded replication intermediate releases a single-stranded 3′ terminus on the (-) strand that may be essential for initiation of genomic (+) strand synthesis. ICR sequences internal to the BMV genome were also found to be required for efficient replication. Asymmetric production of excess genomic (+) over (-) strand RNA, characteristic of all (+) strand viruses, may be accomplished through transition of the replicase from competence for (-) to (+) strand synthesis by the recruitment of additional host factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist P, Bujarski JJ, Kaesberg P, Hall TC (1984) Localization of the replicase recognition site within brome mosaic virus RNA by hybrid-arrested RNA synthesis. Plant Mol Biol 3: 37–44

    Article  CAS  Google Scholar 

  2. Andino R, Rieckhof GE, Baltimore D (1990) A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63: 369–380

    Article  PubMed  CAS  Google Scholar 

  3. Andino R personal communication

    Google Scholar 

  4. Axelrod VD, Brown E, Priano C, Mills DR (1991) Coliphage Qβ RNA replication: RNA catalytic for single-stranded release. Virology 184: 595–608

    Google Scholar 

  5. Blumenthal T, Carmichael GG (1979) RNA replication: function and structure of the Qβ replicase. Annu Rev Biochem 48: 525–548

    Article  PubMed  CAS  Google Scholar 

  6. French R, Ahlquist P (1987) Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J Virol 61: 1457–1465

    PubMed  CAS  Google Scholar 

  7. Goldbach R (1987) Genomic similarities between plant and animal RNA viruses. Microbiol Sci 4: 197–202

    PubMed  CAS  Google Scholar 

  8. deGroot RJ, Hardy WR, Shirako Y, Strauss JH (1990) Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evidence for temporal regulation of polyprotein processing in vitro. EMBO J 9: 2631–2638

    Google Scholar 

  9. Hodgman TC (1988) A new superfamily of replicative proteins. Nature 333: 22–23

    Article  PubMed  CAS  Google Scholar 

  10. Huntley CC, Hall TC (1993) Minus sense transcripts of brome mosaic virus RNA-3 intercistronic region interfere with viral replication. Virology 192: 290–297

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa M, Meshi T, Ohno T, Okada Y (1991) Specific cessation of minus-strand RNA accumulation at an early stage of tobacco mosaic virus infection. J Virol 65: 861–868

    PubMed  CAS  Google Scholar 

  12. Kao CC, Ahlquist P (1992) Identification of the domains required for direct interaction of the helicase-like and polymerase-like RNA replication proteins of brome mosaic virus. J Virol 66: 7293–7302

    PubMed  CAS  Google Scholar 

  13. Levis R, Schlesinger S, Huang HV (1990) Promoter for Sindbis virus RNA- dependent subgenomic RNA transcription. J Virol 64: 1726–1733

    PubMed  CAS  Google Scholar 

  14. Marsh LE, Hall TC (1987) Evidence implicating a tRNA heritage for the promoters of positive-strand RNA synthesis in brome mosaic virus and related viruses. In: The evolution of catalytic function. Cold Spring Harbor Symposium on Quantitative Biology, vol 52. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 331–341

    Google Scholar 

  15. Marsh LE, Huntley CC, Pogue GP, Connell JP, Hall TC (1991) Regulation of (+):(-) strand asymmetry in replication of brome mosaic virus RNA. Virology 182: 76–83

    Article  PubMed  CAS  Google Scholar 

  16. Marsh LE, Pogue GP, Szybiak U, Connell JP, Hall TC (1991) Non-replicating j deletion mutants of brome mosaic virus RNA-2 interfere with viral replication, JJ Gen Virol 72: 2367–2374

    Article  CAS  Google Scholar 

  17. Marsh LE, Pogue GP, Huntley CC, Hall TC (1991) Insight to replication strategies and evolution of (+) strand RNA viruses provided by brome mosaic virus. In: Miflin BJ (ed) Oxford surveys of plant molecular and cell biology, vol 7. Oxford, University Press, New York, pp 297–334

    Google Scholar 

  18. Nakhasi HL, Cao X-Q, Rouault TA, Liu T-Y (1991) Specific binding of host cell proteins to the 3′-terminal stem-loop structure of rubella virus negative-strand RNA. J Virol 65: 5961–5967

    PubMed  CAS  Google Scholar 

  19. Nesters HGM, Strauss JH (1990) Defined mutations in the 5′ nontranslated sequence of Sindbis virus RNA. J Virol 64: 4162–4168

    Google Scholar 

  20. Pardigon N, Strauss JH (1992) Cellular proteins bind to the 3′ end of Sindbis virus minus-strand RNA. J Virol 66: 1007–1015

    PubMed  CAS  Google Scholar 

  21. Pogue GP, Marsh LE, Hall TC (1990) Point mutations in the ICR2 motif of brome mosaic virus RNAs debilitate (+)-strand replication. Virology 178:152–160

    Article  PubMed  CAS  Google Scholar 

  22. Pogue GP, Hall TC (1992) The requirement for a 5′ stem-loop structure in brome mosaic virus replication supports a new model for viral positive-strand RNA initiation. J Virol 66: 674–684

    PubMed  CAS  Google Scholar 

  23. Pogue GP, Marsh LE, Connell JP, Hall TC (1992) Requirement for ICR-like sequences in the replication of brome mosaic virus genomic RNA. Virology 188: 742–753

    Article  PubMed  CAS  Google Scholar 

  24. Rao ALN, Huntley CC, Marsh LE, Hall TC (1990) Analysis of RNA stability and (-) strand content in viral infections using biotinylated probes. J Virol Methods 30: 239–250

    Article  PubMed  CAS  Google Scholar 

  25. Sawicki DL, Sawicki SG (1980) Short-lived minus-strand polymerase for Semliki Forest virus. J Virol 34: 108–118

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Pogue, G.P., Huntley, C.C., Hall, T.C. (1994). Common replication strategies emerging from the study of diverse groups of positive-strand RNA viruses. In: Brinton, M.A., Calisher, C.H., Rueckert, R. (eds) Positive-Strand RNA Viruses. Archives of Virology Supplementum, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9326-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9326-6_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82522-8

  • Online ISBN: 978-3-7091-9326-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics