Skip to main content

Some reflections on iron dependent free radical damage in the central nervous system

  • Conference paper
Iron in Central Nervous System Disorders

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

We give a brief introduction into the chemical relationship between iron and oxidative stress serving two purposes:

Firstly we will mention possible deleterious consequences of iron accumulation in central nervous system (CNS) to biomolecules essential for cell viability. Secondly, we try to discuss some difficulties scientists have to face when interpreting experimental data by which they want to prove or to rule out a role of reactive oxygen species (ROS) in the pathogenesis or progression of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benzi G, Pastoris O, Villa RF (1988) Changes induced by aging and drug treatment on cerebral enzymatic antioxidant system. Neurochem Res 13: 467–478

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134: 707–716

    PubMed  CAS  Google Scholar 

  • Connor JR, Benkovié SA (1992) Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol 32: S51 - S61

    Article  PubMed  CAS  Google Scholar 

  • Croft S, Gilbert BC, Lindsay Smith JR, Whitwood AC (1992) An E.S.R. investigation of the reactive intermediate generated in the reaction between FeII and H2O2 in aqueous solution of the hydroxyl radical. Free Radic Res Commun 17: 21–39

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44: 147–159

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1986a) Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1986b) Superoxide dismutases. Adv Enzymol 58: 62–97

    Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1992) The molecular pharmacology of Ldeprenyl. Eur J Pharmacol-Mol Pharmacol Sect 226: 97–108

    Article  CAS  Google Scholar 

  • Götz ME, Dirr A, Freyberger A, Burger R, Riederer P (1993) The thiobarbituric acid assay reflects susceptibility to oxygen-induced lipid peroxidation in vitro rather than levels of lipid hydroperoxides in vivo: a methodological approach. Neurochem Int 22: 255–262

    Article  PubMed  Google Scholar 

  • Gorsky LD, Koop DR, Coon MJ (1984) On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-4550. J Biol Chem 259: 6812–6817

    PubMed  CAS  Google Scholar 

  • Granger DN, Rutili G, McCord JM (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29

    PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Halliwell B (1990) The measurement and mechanism of lipid peroxidation in biological systems. Trends Biol Sci 4: 129–135

    Article  Google Scholar 

  • Hageman JJ, Bast A, Vermeulen NPE (1992) Monitoring of oxidative free radical damage in vivo: analytical aspects. Chem-Biol Interactions 82: 243–293

    Article  CAS  Google Scholar 

  • Halliwell B (1992a) Oxygen radicals as key mediators in neurological disease: factor fiction? Ann Neurol 32: S10 - S15

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623

    Google Scholar 

  • Halliwell B, Gutteridge MC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation: an update. FEBS Lett 307: 108–112

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9: 515–540

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa RM (1989) Neurotoxins that affect central and peripheral catecholamine neurons, In: Boulton AB, Baker GB, Juorio AV (eds) Neuromethods, vol 12. Drugs as tools in neurotransmitter research. Humana Press, Clifton, p

    Google Scholar 

  • Paraidathathu T, De Groot H, Kehrer JP (1992) Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Radic Biol Med 13: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Powis G (1989) Free radical formation by antitumor quinones. Free Radic Biol Med 6: 63–101

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA, Godber SS (1991) Noninvasive measures of oxidative stress status in humans. Free Radic Biol Med 10: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Rao KS, Loeb LA (1992) DNA damage and repair in brain: relationship to aging. Mutat Res 275: 317–329

    PubMed  CAS  Google Scholar 

  • Saran M, Bors W (1991) Direct and indirect measurements of oxygen radicals. Clin Invest 69: 957–964

    CAS  Google Scholar 

  • Shen X, Tian J, Li Y, Li X, Chen Y (1992) Formation of the excited ferryl species following Fenton reaction. Free Radic Biol Med 13: 585–592

    Article  PubMed  CAS  Google Scholar 

  • Sinha BK, Mimnaugh EG (1990) Free radicals and anticancer drug resistance: oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors. Free Radic Biol Med 8: 567–581

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Brunk UT (1992) Mitochondrial production of pro-oxidants and cellular senescence. Mutat Res 275: 295–304

    PubMed  CAS  Google Scholar 

  • The Parkinson Study Group (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 328: 176–183

    Article  Google Scholar 

  • Valenzuela A (1991) The biological significance of malondialdehyde determina-tion in the assessment of tissue oxidative stress. Life Sci 48: 301–309

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH (1988) Brain iron: neurochemical and behavioural aspects. Taylor Francis, New York, p 1

    Google Scholar 

  • Youdim MBH, Finberg JPM (1990) New directions in monoamine oxidase A and B: selective inhibitors and substrates. Biochem Pharmacol 41: 155–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Götz, M.E., Dirr, A., Gsell, W., Burger, R., Freyberger, A., Riederer, P. (1993). Some reflections on iron dependent free radical damage in the central nervous system. In: Riederer, P., Youdim, M.B.H. (eds) Iron in Central Nervous System Disorders. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9322-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9322-8_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82520-4

  • Online ISBN: 978-3-7091-9322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics