Brain iron and schizophrenia

  • K. W. Lange
  • J. Kornhuber
  • P. Kruzik
  • W.-D. Rausch
  • E. Gabriel
  • K. Jellinger
  • P. Riederer
Conference paper
Part of the Key Topics in Brain Research book series (KEYTOPICS)


The concentration of iron was determined by atomic absorption spectroscopy in post-mortem tissue from various brain regions in schizophrenic patients and control subjects without neuropsychiatric diseases. Analysis of iron content showed a clear regional difference with highest iron levels in the caudate nucleus. There was no correlation between iron content and the neuroleptic-free period prior to death. Iron content in the schizophrenic group was not different from controls for the cortex, gyrus cinguli, caudate nucleus, hippocampus, amygdala, corpus mamillare and hypothalamus. In one patient who had suffered from tardive dyskinesia prior to death, the iron concentration in all the brain regions examined was within the mean ± 2 SD range of those schizophrenic subjects without prior tardive dyskinesia. The present results suggest that there are no profound differences in the content of iron in post-mortem brain tissue of schizophrenic and control subjects.


Iron Content Schizophrenic Patient Caudate Nucleus Tardive Dyskinesia Atomic Absorption Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartzokis G, Garber HJ, Marder SR, Olendorf WH (1990) MRI in tardive dyskinesia: shortened left caudate T2. Biol Psychiatry 28: 1027–1036PubMedCrossRefGoogle Scholar
  2. Campbell WG, Raskind MA, Gordon T, Shaw CM (1985) Iron pigment in the brain of a man with tardive dyskinesia. Am J Psychiatry 142: 364–365PubMedGoogle Scholar
  3. Casanova MF, Waldman IN, Kleinman JE (1990) A postmortem quantitative study of iron in the globus pallidus of schizophrenic patients. Biol Psychiatry 27: 143–149PubMedCrossRefGoogle Scholar
  4. Casanova ME, Comparini SO, Kim RW, Kleinman JE (1992) Staining intensity of brain iron in patients with schizophrenia: a postmortem study. J Neuropsychiatr Clin Neurosci 4: 36–41Google Scholar
  5. Feighner JP, Robins E, Guze SB, Woodruff RA, Winokur G, Munoz R (1972) Diagnostic criteria for use in psychiatric research. Arch Gen Psychiatry 26: 57–63PubMedCrossRefGoogle Scholar
  6. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3: 41–51PubMedCrossRefGoogle Scholar
  7. Harrison WW, Netsky MG, Brown MD (1968) Trace elements in human brain: copper, zinc, iron, and magnesium. Clin Chim Acta 21: 55–60PubMedCrossRefGoogle Scholar
  8. Hill JM (1988) The distribution of iron in the brain. In: Youdim MBH (ed) Brain iron: neurochemistry and behavioural aspects. Taylor and Francis, London, pp 1–24Google Scholar
  9. Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11: 595–603PubMedCrossRefGoogle Scholar
  10. Hopf A (1952) Über histopathologische Veränderungen im Pallidum und Striatum bei Schizophrenie. In: First International Congress of Neuropathology, vol 3. Rosenberg and Sellier, Turin, pp 629–635Google Scholar
  11. Hunter R, Blackwood W, Smith MC, Cumings JN (1968) Neuropathological findings in three cases of persistent dyskinesia following phenothiazine medication. J Neurol Sci 7: 263–273PubMedCrossRefGoogle Scholar
  12. Josephy H (1930) Dementia praecox (Schizophrenie). In: Bumke O (Hrsg) Die Anatomie der Psychosen. Springer, BerlinGoogle Scholar
  13. Kornhuber J, Lange KW, Kruzik P, Jellinger K, Gabriel E, Riederer P (1993) The contents of iron, copper, zinc, magnesium, and calcium in post-mortem brain tissue from schizophrenic patients. Biol Psychiatry (submitted)Google Scholar
  14. Lange KW, Youdim MBH, Riederer P (1992) Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm [Suppl] 38: 27–44Google Scholar
  15. Löwenthal A, Bruyn GW (1968) Calcification of the striopallidodentate system. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 6. North-Holland, Amsterdam, pp 703–725Google Scholar
  16. Pollitt E, Leibel R (eds) (1982) Iron deficiency: brain biochemistry and behaviour. Raven Press, New YorkGoogle Scholar
  17. Potkin SG, Shore D, Torrey EF, Weinberger DR, Gillin JC, Henkin RI, Agarwal RP, Wyatt RJ (1982) Cerebrospinal fluid zinc concentrations in ex-heroin addicts and patients with schizophrenia: some preliminary observations. Biol Psychiatry 17: 1315–1322PubMedGoogle Scholar
  18. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520PubMedCrossRefGoogle Scholar
  19. Spatz H (1924) Über den Eisennachweis im Gehirn, besonders in Zentren des extrapyramidal-motorischen Systems. Z Neurol Psychiat LXXVII: 261–390Google Scholar
  20. Schiffer D (1971) Calcification in the nervous tissue. In: Minkler J (ed) Pathology of the nervous system, vol 3. McGraw-Hill, New York, pp 1342–1360Google Scholar
  21. Smeyers-Verbeke J, Michotte Y, Pelsmaeckers J, et al (1975) The chemical composition of idiopathic nonarteriosclerotic cerebral calcifications. Neurology 25: 48–57PubMedGoogle Scholar
  22. Stevens BJ (1970) Clinical applications of atomic absorption spectroscopy. Varian Techtron Pty Ltd, AustraliaGoogle Scholar
  23. Stevens JR (1982) Neuropathology of schizophrenia. Arch Gen Psychiatry 39: 1131–1139PubMedCrossRefGoogle Scholar
  24. Weiner WJ, Nausieda PA, Klawans HL (1977) Effect of chlorpromazine on central nervous system concentrations of manganese, iron, and copper. Life Sci 20: 1181–1186PubMedCrossRefGoogle Scholar
  25. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1: 80–83CrossRefGoogle Scholar
  26. Yehuda S, Youdim MBH (1988) Brain iron deficiency: biochemistry and behaviour. In: Youdim MBH (ed) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, London, pp 89–114Google Scholar
  27. Youdim MBH (1988) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, LondonGoogle Scholar
  28. Youdim MBH (1990) Developmental neuropharmacological and biochemical aspects of iron-deficiency. In: Dobbing J (ed) Brain, behaviour and iron-deficiency. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  29. Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 26: 47–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • K. W. Lange
    • 1
  • J. Kornhuber
    • 1
  • P. Kruzik
    • 2
  • W.-D. Rausch
    • 2
  • E. Gabriel
    • 3
  • K. Jellinger
    • 4
  • P. Riederer
    • 1
  1. 1.Department of PsychiatryUniversity of WürzburgWürzburgFederal Republic of Germany
  2. 2.Institute of Medical ChemistryUniversity of Veterinary MedicineAustria
  3. 3.Psychiatric Hospital BaumgartnerhöheViennaAustria
  4. 4.Ludwig-Boltzmann-Institute of Clinical NeurobiologyViennaAustria

Personalised recommendations