Advertisement

Iron deposits in brain disorders

  • K. Jellinger
  • E. Kienzl
Part of the Key Topics in Brain Research book series (KEYTOPICS)

Summary

Abnormal iron deposition in the CNS may be related to exogenous or endogenous factors. CNS is involved in idiopathic hemochromatosis, an autosomal recessively inherited storage disorder with increased resorption of iron in the gut. In superficial siderosis of the CNS resulting from repeated cerebral or subarachnoid bleeding, deposition of hemosiderin depends on accumulation of ferritin in the microglia. In experimental models, storage of heme-iron is mediated by shifts in the H/L ratio of ferritin. Tissue destruction is caused by Fe-catalyzed lipid peroxidation. Incrustation of neurons in perinatal brain injury or mitochondrial encephalopathies shows the presence of iron and calcium, also present in vascular deposits in basal ganglia and cerebellum in Fahr’s disease, often related to hypoparathyroidism, hemochromatosis, and mitochondrial disorders. Iron deposition in the brain is found in various neurodegenerative disorders. In Hallervorden-Spatz disease, the globus pallidus and reticulata nigrae show iron-pigment deposits associated with axonals spheroids, increased iron content and uptake in the basal ganglia demonstrated in vivo by high-field MRI and PET. Decreased cystein dioxygenase in pallidum may result in accumulation of cystein that may locally bind iron and, via lipid peroxidation, may cause neuronal damage. In striatonigral degeneration, the putamen contains lipofuscin-like pigment with 4-fold increase in iron content suggesting pigment formation via lipid peroxidation. In Parkinson’s disease, the damaged substantia nigra zona compacta shows increase of total iron and Fe3+, mainly in neuromelanin, suggesting that ironmelanin interaction may be a pathogenic factor, while ferritin-reactive microglia indicates active degeneration. The pathogenic role of iron increased in neurofibrillary tangles in Alzheimer’s disease needs further elucidation.

Keywords

Iron Deposit Brain Iron Increase Iron Content Superficial Siderosis Cerebellar Dentate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisen P (1992) Entry of iron into cells: a new role for the transferrin receptor modulating iron release from transferrin. Ann Neurol 32 [Suppl]: S62–S68PubMedCrossRefGoogle Scholar
  2. Angelini L, Nardocci N, Rumi V, Zorzi C, Strada L, Savoiardo (1992) Haller- vorden-Spatz disease. Clinical and MRI study of 11 cases diagnosed in life. J Neurol 239: 417–425PubMedCrossRefGoogle Scholar
  3. Bancher C, Grundke-Iqbal K, Iqbal K, Fried VA, Smith HT, Wisniewski HM (1991) Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease. Brain Res 539: 11–18PubMedCrossRefGoogle Scholar
  4. Beard JL, Connor JC, Jones BC (1993) Iron in the brain. Nutr Rev 51: 157–170PubMedCrossRefGoogle Scholar
  5. Ben-Shachar D, Youdim MBH (1993) Iron, melanin and dopamine interaction: relevance to Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 17: 139–150PubMedCrossRefGoogle Scholar
  6. Bracchi M, Savoiardo M, Triulzi F, Daniele D, Grisoli M, Bradac GB, Agostinis C, Pelucchetti D, Scotti G (1993) Superficial siderosis of the CNS: MR diagnosis and clinical findings. AJNR 14: 227–236PubMedGoogle Scholar
  7. Cervos-Navarro J (1991) Pathologie des Nervensystems V. Degenerative and metabolische Erkrankungen. In: Doerr W, Uehlinger E (Hrsg) Spezielle pathologische Anatomie. Springer, Berlin Heidelberg New York Tokyo, S 419–462Google Scholar
  8. Chafi AH, Hauw JJ, Rancurel G, Berry JP, Galle C (1991) Absence of aluminium in Alzheimer’s disease brain tissue: electron microprobe and ion microprobe studies. Neurosci Lett 123: 61–64PubMedCrossRefGoogle Scholar
  9. Connor JR, Menzies SL, St. Martin SM St, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s disease brains. J Neurosci Res 31: 75–83PubMedCrossRefGoogle Scholar
  10. Dedman DJ, Treffry A, Candy JM, Taylor GAA, Morris CM, Perry RH, Edwardson JA, Harrison PM (1992) Iron and aluminium in reation to brain ferritin in normal individuals and Alzheimer’s disease and chronic dialysis patients. Biochem J 287: 509–514PubMedGoogle Scholar
  11. De Voider AG, Francart J, Laterre C, et al (1989) Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration. Ann Neurol 26: 239–247CrossRefGoogle Scholar
  12. Dexter TD, Wells FR, Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Increased nigral iron content and alteration in other metals occuring in Parkinson’s disease. J Neurochem 52: 1830–1836PubMedCrossRefGoogle Scholar
  13. Dexter TD, Carayon A, Javoy-Agid F, et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neuro-degenerative disease affecting the basal ganglia. Brain 114: 1953–1975PubMedCrossRefGoogle Scholar
  14. Diezel PB, Taubert M (1954) Untersuchungen am Gehirneisen. Verh Dtsch Ges Path 38: 221–225Google Scholar
  15. Drayer BP, Olanow W, Burger P, Johnson GA, Herfkens S, Riederer S (1986) Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 159: 493–498PubMedGoogle Scholar
  16. Duckett S, Galle P, Escouroll R, Poirier J, Hauw JJ (1977) Presence of zinc, aluminium, magnesium in striatopallidodentate (SPD) calcifications (Fahr’s disease): electron probe study. Acta Neuropathol 38: 7–10PubMedCrossRefGoogle Scholar
  17. Erbslöh F (1958) Kernikterus. In: Lubarsch 0, Henke F, Rossle R (Hrsg) Handbuch der speziellen pathologischen Anatomie and Histologie, Bd XIII/2. Springer, Berlin Göttingen Heidelberg, S 1769Google Scholar
  18. Fahn S, Cohen G (1992) The oxidative stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32: 804–812PubMedCrossRefGoogle Scholar
  19. Faucheux BA, Hirsch EC, Villares J, Selimie F, Mouatt-Prigent A, Javoy-Agid F, Hauw JJ, Agid Y (1993) Distribution of (’251)-ferrotransferrin binding in the mesencephalon of control subjects and patients with Parkinson’s disease. J Neurochem (in apress)Google Scholar
  20. Fearnley JM, Lees AJ (1990) Striatonigral degeneration. Brain 113: 1823–1842PubMedCrossRefGoogle Scholar
  21. Galazka-Friedman J, Bauminger ER, Friedman A, Barcikowska M, Sualski J, Hechel D (1993) The role of iron in Parkinson’s disease: Mossbauer spectroscoy study. J Neurochem (in apress )Google Scholar
  22. Good PF, Perl DP, Bierer LM, Schmeidler J (1992a) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer’s disease: a laser microprobe (LAMMA) study. Ann Neurol 31: 286–292CrossRefGoogle Scholar
  23. Good PF, Olanow WC, Perl DP (1992b) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease. A LAMMA study. Brain Res 593: 343–346CrossRefGoogle Scholar
  24. Goto S, Hirano A, Matsumoto S (1989) Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration. Ann Neurol 26: 766–770PubMedCrossRefGoogle Scholar
  25. Guseo A (1983) Striopallidodentale Verkalkungen (Fahrsches Syndrom). In: Hopf H Ch, Poeck K, Schliack H (Hrsg) Neurologie in Praxis and Klinik, Bd I. G Thieme, Stuttgart, S 6. 25–6. 29Google Scholar
  26. Hall S, Rutledge JN, Schallert T (1992) MRI, brain iron and experimental Parkinson’s disease. J Neurol Sci 111: 198–208CrossRefGoogle Scholar
  27. Hallgren B, Sourander P (1958) The effect of age on the nonhaem iron in the human brian. J Neurochem 3: 41–51PubMedCrossRefGoogle Scholar
  28. Harman D (1992) Free radical theory of aging: a hypothesis on pathogenesis of senile dementia of the Alzheimer type. Age 16: 23–30CrossRefGoogle Scholar
  29. Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11: 595–603PubMedCrossRefGoogle Scholar
  30. Hirsch EC (1992) Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson’s disease? Ann Neurol 32: S88–S93CrossRefGoogle Scholar
  31. Hirsch EC, Brandel J-P, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease. An X-ray microanalysis. J Neurochem 56: 446–451PubMedCrossRefGoogle Scholar
  32. Huk WJ, Gademann G, Friedmann G (1990) MRI of central nervous system diseases. Functional anatomy, imaging, neurological symptoms, pathology. Springer, Berlin Heidelberg New York Tokyo, pp 215–216Google Scholar
  33. Ito H, Goto S, Sakamoto S, Hirano A (1992) Calbindin-D28k in the basal ganglia of patients with parkinsonism. Ann Neurol 32: 543–550PubMedCrossRefGoogle Scholar
  34. Jameson RF, Linert W (1991) Complex formation folowed by internal electron transfer: the reaction between cysteine and iron (III). Monatsh Chemie 122: 887–906CrossRefGoogle Scholar
  35. Jellinger K (1992) Sonderformen; Progressive Pallidumatrophie, HallervordenSpatz-Krankheit, striatonigrale Degeneration. In: Hopf H Ch, Poeck K, Schliack H (Hrsg) Neurologie in Praxis and Klinik, Bd II, 2. Aufl. Thieme, Stuttgart, S 4. 20–4. 27Google Scholar
  36. Jellinger K (1993) Pathogenese and Pathophysiologie der Parkinson-Krankheit. Neuropsychiatrie 7: 29–37Google Scholar
  37. Jellinger K, Paulus, W, Grundke-Igbal I, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm [P-D Sect] 2: 327–340CrossRefGoogle Scholar
  38. Jellinger K, Kienzl E, Rumplmair G, Riederer P, Stachelberger D, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of Parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1172PubMedCrossRefGoogle Scholar
  39. Jellinger K, Kienzl E, Rumplmair G, Paulus W, Riederer P, Stachelberger H, Youdim MBH, Ben Shachar D (1993) Iron and ferritin in substantia nigra in Parkinson’s disease. Adv Neurol 60: 267–272PubMedGoogle Scholar
  40. Jenner P, Schapira AHV, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42: 2241–2250PubMedGoogle Scholar
  41. Jones HR Jr, Hedley-Whyte ET (1983) Idiopathic hemochromatosis (IHC). Neurology 33: 1479–1483PubMedGoogle Scholar
  42. Kato S, Meshitsuka S, Ohama E, Tanaka J, Llena JF, Hirano A (1992) Increased iron content in the putamen of patients with striatonigral degeneration. Acta Neuropathol 84: 328–330PubMedGoogle Scholar
  43. Koeppen AH, Dentinger MP (1988) Brain hemosiderin and superficial siderosis of the central nervous system. J Neuropathol Exp Neurol 47: 249–270PubMedCrossRefGoogle Scholar
  44. Koeppen AH, Borke RC (1991) Experimental superfical siderosis of the central nervous system. I. Morphological studies. J Neuropathol Exp Neurol 50: 579–594PubMedCrossRefGoogle Scholar
  45. Koeppen AH, Hurwitz CG, Dearborn RE, Dickson AC, Borke RC, Chu RC (1992) Experimental siderosis of the central nervous system: biochemical correlates. J Neurol Sci 112: 38 45Google Scholar
  46. Leenders KL (1993) Personal communicationGoogle Scholar
  47. Leestma JE, Martin E (1968) An electron probe and histochemical study of ferru ginated neurons. Arch Pathol 122: 597–605Google Scholar
  48. Miranda AF, Ishii S, DiMauro S, Shay JW (1989) Cytochrome oxidase C deficiency in Leigh’s syndrome. Neurology 39: 697–702PubMedGoogle Scholar
  49. McGeer PL, Itagaki S, Boyes B, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285–1291PubMedGoogle Scholar
  50. Miyasaki K, Muaro S, Koizumi N (1977) Hemochromatosis associated with brain le sions: a disorder of trance metal binding proteins and/or polymers? J Neuropathol Exp Neurol 36: 964–976PubMedCrossRefGoogle Scholar
  51. Morris CM, Candy JM, Oakley AE, Bloxam CA, Edwardson JA (1992) Histochemical distribution of hon-haem iron in the human brain. Acta Anat 144: 235–257PubMedCrossRefGoogle Scholar
  52. O’Brien C, Sung JH, McGeachie RE, Lee MC (1990) Striatonigral degeneration; clinical, MRI, and pathologic correlation. Neurology 40: 710–711PubMedGoogle Scholar
  53. Park BE, Netsky MG, Bertsill WL (1975) Pathogenesis of pigment and spheroid formation in Hallervorden-Spatz syndrome and related disorders. Neurology 25: 1172–1178PubMedGoogle Scholar
  54. Perl DP, Good PF (1992) Comparative techniques for determinating cellular iron distribution in brain tissues. Ann Neurol 32 [Suppl]: S76–S81PubMedCrossRefGoogle Scholar
  55. Perry TL, Norman MG, Yong VW, Whiting S, Crichton JU, Hansen S, Kish SJ (1985) Hallervorden-Spatz disease: cystein accumulation and cystein dioxygenase deficiency in the globus pallidus. Ann Neurol 18: 482–489PubMedCrossRefGoogle Scholar
  56. Riederer P, Dirr A, Goetz M, Sofic E, Jellinger K, Youdim MBH (1992) Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease. Ann Neurol 31 [Suppl]: S101–5104CrossRefGoogle Scholar
  57. Richardson JS, Subbarao KF, Ang LC (1992) On the possible role of iron-induced free radical peroxidation in neuronal degeneration in Alzheimer’s disease. Ann NY Acad Sci 648: 326–327PubMedCrossRefGoogle Scholar
  58. Roskams AJ, Connor JR (1990) Aluminum access to the brain: a role for transferrin and its receptor. Proc Natl Acad Sci USA 87: 9024–9027PubMedCrossRefGoogle Scholar
  59. Savoiardo H, Halliday WC, Nardocci N, et al (1993) Hallervorden-Spatz disease: MR and pathologic findings. Am J Neuroradiol 14: 155–162PubMedGoogle Scholar
  60. Searle AJF, Willson RL (1983) Stimulation of microsomal lipid peroxidation by iron and cysteine: characterization and the role of free radicals. Biochem J 212: 549–554PubMedGoogle Scholar
  61. Sengstock GJ, Olanow CW, Menzies RA, Dunn AJ, Arendash GW (1993) Infusion of iron into the rat substantia nigra: nigral pathology and dose-dependent loss of striatal dopaminergic markers. J Neurosci Res 34 (in apress)Google Scholar
  62. Sethi KD, Adams RJ, Loring DW, El Mammal T (1988) Hallervorden-Spatz syndrome: magnetic resonance imaging correlations. Ann Neurol 24: 692–694Google Scholar
  63. Sofic E, Riederer P, Heinsen H, Beckann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron III and total iron content in postmortem substantia nigra in parkinsonian brains. J Neural Transm 74: 199–205PubMedCrossRefGoogle Scholar
  64. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991). Selective increase of iron in substantia nigra zona compacta of parkinsonian brain. J Neurochem 56: 987–982CrossRefGoogle Scholar
  65. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142: 128–130PubMedCrossRefGoogle Scholar
  66. Stevens I, Petersen D, Grodd W, Poremba M, Dichgans J (1991) Superficial siderosis of the central nervous system. Arch Psych Clin Neurol 241: 57–60CrossRefGoogle Scholar
  67. Swaiman KF (1991) Hallervorden-Spatz syndrome and brain iron metabolism. Arch Neurol 48: 1285–1294PubMedCrossRefGoogle Scholar
  68. Tripathi RC, Tripathi BJ, Baserman SC, Park JK (1992) Clinicopathologic correlation and pathogenesis of ocular and central nervous system manifestations in Hallervorden-Spatz syndrome. Acta Neuropathol 83: 113–119PubMedCrossRefGoogle Scholar
  69. Uitti RJ, Rajput AH, RozdilskY B, Bickis M, Wollin T, Yuen WK (1989) Regional metal concentrations in Parkinson’s disease and control brains. Can J Neurol Sci 16: 310–31Google Scholar
  70. Uney JB, Anderton BH, Thomas SM (1992) Changes in heath shock protein 70 and ubiquitin mRNA levels in C1300 N2A mouse neuroblastoma cells following treatment with iron. J Neurochem 60: 659–665CrossRefGoogle Scholar
  71. Vakili S, Drew AL, von Schuching S, Becker D, Zedman W (1977) HallervordenSpatz syndrome. Arch Neurol 34: 729–738PubMedCrossRefGoogle Scholar
  72. Wisniewski HM, Wegiel J, Wang KH, Lach B (1992) Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer’s disease. Acta Neuropathol 84: 117–127PubMedCrossRefGoogle Scholar
  73. Yoshika M, Shapshak P, Sun WCJ, Nelson SJ, Svenningsson A, Tate LG, Pardo V, Resnik L (1992) Simultaneous detection of ferritin and HIV-1 in reactive microglia. Acta Neuropathol 84: 297–306Google Scholar
  74. Youdim MBH, Ben-Shahar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s diseases — review. Mov Disord 8: 1–12PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • K. Jellinger
    • 2
  • E. Kienzl
    • 1
  1. 1.Ludwig Boltzmann-Institute of Clinical NeurobiologyLainz HospitalViennaAustria
  2. 2.Ludwig Boltzmann-Institute of Clinical NeurobiologyLainz-HospitalWienAustria

Personalised recommendations