Skip to main content

Consequences of intrastriatally administrated FeCl3 and 6-OHDA without and after transient cerebral oligemia on behaviour and navigation

A free radical related tissue damage?

  • Conference paper
Iron in Central Nervous System Disorders

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

  • 455 Accesses

Summary

6-OHDA (6 or 8 µg) unilaterally applied into the ventrolateral striatum induces neurotoxic effects which lead to unilateral hyperactivity triggering contralateral turning and rotations after apomorphine administration. Treatment with alpha-tocopherol prevents the hypersensitive reaction. The sensitivity of the cerebral tissue to apomorphine following 6-OHDA treatment is enhanced when 7.5 µg FeCl3 is coadministered with 6-OHDA. Only when the combination of 6-OHDA and FeCl3 is administered the escape latency to find a hidden platform in a water maze-test increased as measured 12 weeks later. The night activity of such treated animals was markedly reduced. Remarkable effects of unilaterally applied FeCl3 (0.06–1.5 ug) were observed in old rats, and in rats after transient cerebral oligemia. Apomorphine treatment to such animals induced rotations. It is possible, therefore, that mild to moderate transient or permanent local oxygen deficits together with iron cause progressive damage to vulnerable cerebral tissue. Such an effect would be comparable to the neurotoxicity of 6-OHDA possibly involve free radicals and lipid peroxidation.

On leave: Institute of Pharmacology, Polish Academy of Science, Krakow, Poland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Yuki S, Kogure K (1988) Strong attenuation of ischemic and post ischemic brain edema in rats by a novel free radical scavenger. Stroke 19: 480–485

    Article  PubMed  CAS  Google Scholar 

  • Akiyama Y, Akihiro I, Koshimura K, Ohue T, Yamagata S, Miwa S, Kikuchi H (1991) Effect of transient forebrain ischemia and reperfusion on function of dopaminergic neurons and dopamine reuptake in vivo rat striatum. Brain Res 561: 120–127

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Johshita H, Koide T, Takakura K (1984) Amelioration of ischaemic cerebral oedema by a free radical scavenger, AVS: 1.2-bis (nicotinamido)propane. An experimental study using a regional ischemia model in cats. Neurol Res 6: 163–168

    PubMed  CAS  Google Scholar 

  • Ben-Schachar D, Youdim MBH (1991) Intranigral iron injection induces behavioural and biochemical “Parkinsonism” in rats. J Neurochem 57: 2133–2135

    Article  Google Scholar 

  • Betz AL (1990) Effect of the free radical scavenger dimethylthiourea in experimental cerebral ischemia. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 335–342

    Google Scholar 

  • Block F, Sieklucka M, Schmidt-Kastner R, Heim C, Sontag KH (1993) Metabolic changes during and after transient clamping of carotid arteries in normotensive rats. Brain Res Bull 31: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Boisvert DPJ, Schreiber C (1992) Interrelationship of excitotoxic and free radical mechanisms. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 311–320

    Google Scholar 

  • Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6: 289–301

    Article  PubMed  CAS  Google Scholar 

  • Bullock R, Graham DI, Chen MH, Lowe D, McCulloch J (1990) Focal cerebral ischemia in the cat: pretreatment with a competitive NMDA receptor antagonist, D-CPPene. J Cereb Blood Flow Metab 10: 668–674

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Ratz M, Jackson-Lewis V, Fahn S (1989) Vitamine E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioural and biochemical evidence. Brain Res 476: 10–15

    CAS  Google Scholar 

  • Clemens JA, Phebus LA (1988) Dopamine depletion protects striatal neurons from ischemia-induced cell death. Life Sci 42: 707–713

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (1984) Oxyradical toxicity in catecholamine neurons. Neurotoxicology 5: 82–88

    Google Scholar 

  • Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroradical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249: 2447–2452

    PubMed  CAS  Google Scholar 

  • Cohen G, Heikkila RE, Allis B, Cabbat F, Demblec D, McNamee D, Mytilineau C, Winston B (1976) Destruction of sympathetic nerve terminals by 6hydroxydopamine: protection by 1-phenyl-3-(2-thiaxolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol, and n-butanol. J Pharmacol Exp Ther 199: 336–352

    PubMed  CAS  Google Scholar 

  • Cools AR (1981) Aspects and prospects of the concept of neurochemical and cerebral organisation of aggression: introduction of new research strategies in “brain and behaviour” studies. In: Brain PF, Bendton D (eds) Biology of aggression. Fythoff and Noordhoff

    Google Scholar 

  • Cools AR, Brachten R, Heeren D, Willeman A, Ellenbroek BJ (1990) Search after neurobiological profile of individual-specific features of Wistar rats. Brain Res Bull 24: 49–69

    Article  PubMed  CAS  Google Scholar 

  • Damsma G, Boisvert DP, Mudrick LA, Wenkstern D, Fibiger HC (1990) Effects of transient forebrain ischemia and pargyline on extra-cellular concentrations of dopamine, serotonine, and their metabolites in the rat striatum as determined by in vivo microdialysis. J Neurochem 54: 801–808

    Article  PubMed  CAS  Google Scholar 

  • Diemer NH, Balchen T, Hu P, Frank L, Bruhn T, Berg M, Christensen T, Jorgensen MB, Johansen FF (1992) The effect of AMPA anagonists on the regional neuron loss after cerebral ischemia in the rat. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 121–127

    Google Scholar 

  • Dunnet SB, Iversen SD (1982) Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid-induced lesions of the neostriarum. Neuropharmacology 22: 899–908

    Article  Google Scholar 

  • Flamm ES, Demopoulos HB, Seligman ML, Poser R, Pietronigro DD, Ransohoff J (1978) Free radicals in cerebral ischemia. Stroke 9: 445–447

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MD, Graham DI, Busto P (1985) Regional glucose utilization and blood flow following grated forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 18: 470–481

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MD, Takagi K, Globus MY-T (1992) Release of neurotransmitters in the cerebral ischemia: relevance to neuronal injury. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 177–189

    Google Scholar 

  • Globus MYT, Busto R, Dietrich WD, Martinez E, Valdez I, Ginsberg MD (1988) Effect of ischemia on the in vitro release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51: 1455–1464

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A (1990) Neurotransmitters and neuromodulators in the basal ganglia. TINS 13: 244–254

    PubMed  CAS  Google Scholar 

  • Haba K, Ogawa N, Mizukawa K, Mori A (1991) Time course of changes in lipid peroxidation, pre-and postsynaptic cholinergic indices, NMDA receptor binding and neuronal death in the gerbil hippocampus following transient ischemia. Brain Res 540: 116–120

    Article  PubMed  CAS  Google Scholar 

  • Hall ED (1990) Lazaroids. Efficacy and anti-oxidant mechanism in experimental cerebral ischemia. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 343–350

    Google Scholar 

  • Hall ED, Yonkers PA (1988) Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 19: 340–344

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for the involvement of oxigen free radicals and lipid peroxidation. Free Rad Biol Med 6: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1978) Biochemical mechanisms accounting for the toxic action of oxygen in living organisms: the key role of superoxid dismutase. Cell Biol Int Rep 2: 113–128

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet is 1396

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. Trends Neurosci 8: 22–26

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, pp 86–276

    Google Scholar 

  • Ito T, Kawakami M, Yamauchi Y (1986) Effect of allopurinol on ischemia and reperfusion-induced cerebral injury in spontaneously hypertensive rats. Stroke 17: 1284–1287

    Article  Google Scholar 

  • Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology. Ann Rev Neurosci 3: 169–187

    Article  PubMed  CAS  Google Scholar 

  • Kirsch JR, Phelan AM, Lange DG, Traystman RJ (1987) Reperfusion induced

    Google Scholar 

  • free radical formation following global ischemia. Ped Res 21: 202A

    Google Scholar 

  • König J, Klippel R (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Kogure K, Arai H, Abe K, Nakano M (1985) Free radical damage of the brain following ischemia. Prog Brain Res 63: 237–259

    Article  PubMed  CAS  Google Scholar 

  • Kurumaji A, Nehls DG, Park CK, McCulloch J (1989) Effects of NMDA antagonists, MK-801 and CPP, upon local cerebral glucose use. Brain Res 496: 268–284

    Article  PubMed  CAS  Google Scholar 

  • Läer S, Hither G, Block F, Sontag KH (1992) Acute reduction of cerebral blood flow by clamping of both carotid arteries increases dopamine release. 4th International Symposium on Pharmacology of Cerebral Ischemia, Marburg, p 67 (Abstract)

    Google Scholar 

  • Läer S, Block F, Hither G, Heim C, Sontag KH (1993) Effect of transient reduction of cerebral blood flow in normotensive rats on striatal dopamine release. J Neural Transm [Gen Sect] 92: 203–211

    Article  Google Scholar 

  • Lekieffre D, Ghribi O, Callebert J, Allix M, Plotkine M, Boulu RG (1992) Effect of kynurenic acid on ischemia-induced glutamate accumulation in the hippo-campus during four-vessel occlusion. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 105–112

    Google Scholar 

  • Lewin G (1985) Clinical trial for Parkinson’s disease. Science 230: 527–528

    Article  PubMed  CAS  Google Scholar 

  • Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY (1989) Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256: H589–H593

    PubMed  CAS  Google Scholar 

  • Lippert K, Welsch M, Krieglstein J (1992) The neuroprotective effect of combined treatment with dizocilpine and NBQX in vitro and in vivo. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 147–153

    Google Scholar 

  • Martz D, Rayos G, Schielke GP, Betz AL (1989) Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in the rat. Stroke 20: 488–494

    Article  PubMed  CAS  Google Scholar 

  • Meldrum BS (1990) Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc Brain Metabol Rev 2: 27–57

    CAS  Google Scholar 

  • Meldrum BS, Moncada C, Lekieffre D, Arvin B, Smith S (1992) Strategies for cerebraprotection: post-synaptic glutamate antagonism versus inhibition of ischemia-induced glutamate release. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 115–119

    Google Scholar 

  • Melzacka M, Weiner N, Heim C, Sontag RH, Wesemann W (1992) Effect of transient reduction of cerebral blood flow on membrane anisotropy and lipid peroxidation in different brain areas. 4th International Symposium on Pharmacology of Cerebral Ischemia, Marburg, p 31 (Abstract)

    Google Scholar 

  • Moncada C, Arvin B, Lekieffre D, Chapman A, Meldrum BS (1992) The nonNMDA anagonist GYKI 52466 inhibits glutamate release induced by transient severe forebrain ischemia in rat striatum. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 155–159

    Google Scholar 

  • Obrenovitch TP, Sarna GS, Matsunoto T, Symon L (1990) Extracellular striatal dopamine and its metabolites during transient cerebral ischemia. J Neurochem 54: 1526–1532

    Article  PubMed  CAS  Google Scholar 

  • Oh SM, Betz AL (1992) Interaction between radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke 22: 915–921

    Article  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Persson L, Bolander H, Hillered L, Hardemark HG, Olsson Y, Ponten U (1989) Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 20: 641–645

    Article  PubMed  CAS  Google Scholar 

  • Phebus LA, Clemens JA (1989) Effects of transient global, cerebral ischemia on striatal extracellular dopamine, serotonine and their metabolites. Life Sci 19: 1335–1342

    Article  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of forebrain ischemia. Ann Neurol 11: 491–498

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1990) A simple ordering of neo-cortical areas established by the compartmental organization of their striatal projections. Proc Natl Acad Sci USA 87: 6196–6199

    Article  PubMed  Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic ischemic brain damage. Ann Neurol 19: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Sengstock GJ, Olanow CW, Dunn AJ, Arendash GW (1992) Iron induces degeneration of nigrostriatal neurons. Brain Res Bull 28: 645–649

    Article  PubMed  CAS  Google Scholar 

  • Sheardown MJ, Hansen AJ, Eskesen K, Suzdak P, Diemer NH, Honore T (1990) Blockade of AMPA receptors in the CA1 region of the hippocampus prevents ischemia induced cell death. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 245–253

    Google Scholar 

  • Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3Dihydroxy-6-nitro-7-sulfamyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247: 571–574

    Google Scholar 

  • Siesjö BS (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–158

    Article  PubMed  Google Scholar 

  • Siesjö BK (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1: 165–211

    PubMed  Google Scholar 

  • Siesjö BK, Katsura K, Pahlmark K, Smith ML (1992) The multiple causes of ischemic brain damage: a speculative synthesis. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 511–525

    Google Scholar 

  • Sontag KH, Heim C, Block F, Sieklucka M, Schmidt-Kastner R, Melzacka M, Osborne N, Läer S, Hüther G, Kunkel M, Ulrich F, Bortolotto Z, Weiner N, Wesemann W (1992) Cerebral oligemic hypoxia and forebrain ischemia — common and different long-lasting consequences. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 471–479

    Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamineinduced degeneration of nigrostriatal dopamine system. Acta Physiol Scand [Suppl] 367: 69–93

    CAS  Google Scholar 

  • Wahl F, Allix M, Plotkine M, Boulu RG (1992) Riluzole reduces infarct size induced by focal cerebral ischemia. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 167–174

    Google Scholar 

  • Watson BD, Ginsberg MD (1989) Ischemic injury in brain: role of oxygen radical-mediated processes. In: Barkai A, Baran NG (eds) Arachidonic acid in the nervous system. Physiological and pathological significance. Ann NY Acad Sci 559: 269–281

    Google Scholar 

  • Weinberger J, Nieves-Rosa J, Cohen G (1985) Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine. Stroke 16: 864–870

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ (1987) Hippocampal granule cell and CA 3–4 lesions impair formation of a place learning set in the rat and induce reflex epilepsy. Behav Brain Res 24: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ, Dunnett SB (1985) Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res 18: 11–29

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Shima T, Uozumi T, Sogabe T, Yamada K, Kawasaki T (1983) A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of tocopherol administration. Stroke 14: 977–982

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 245: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Young W, Wojak JC, DeCresito V (1988) 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke 19: 1013–1019

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Heim, C., Kolasiewicz, W., Jaros, T., Sontag, KH. (1993). Consequences of intrastriatally administrated FeCl3 and 6-OHDA without and after transient cerebral oligemia on behaviour and navigation. In: Riederer, P., Youdim, M.B.H. (eds) Iron in Central Nervous System Disorders. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9322-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9322-8_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82520-4

  • Online ISBN: 978-3-7091-9322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics