Advertisement

Consequences of intrastriatally administrated FeCl3 and 6-OHDA without and after transient cerebral oligemia on behaviour and navigation

A free radical related tissue damage?
  • C. Heim
  • W. Kolasiewicz
  • T. Jaros
  • K.-H. Sontag
Conference paper
Part of the Key Topics in Brain Research book series (KEYTOPICS)

Summary

6-OHDA (6 or 8 µg) unilaterally applied into the ventrolateral striatum induces neurotoxic effects which lead to unilateral hyperactivity triggering contralateral turning and rotations after apomorphine administration. Treatment with alpha-tocopherol prevents the hypersensitive reaction. The sensitivity of the cerebral tissue to apomorphine following 6-OHDA treatment is enhanced when 7.5 µg FeCl3 is coadministered with 6-OHDA. Only when the combination of 6-OHDA and FeCl3 is administered the escape latency to find a hidden platform in a water maze-test increased as measured 12 weeks later. The night activity of such treated animals was markedly reduced. Remarkable effects of unilaterally applied FeCl3 (0.06–1.5 ug) were observed in old rats, and in rats after transient cerebral oligemia. Apomorphine treatment to such animals induced rotations. It is possible, therefore, that mild to moderate transient or permanent local oxygen deficits together with iron cause progressive damage to vulnerable cerebral tissue. Such an effect would be comparable to the neurotoxicity of 6-OHDA possibly involve free radicals and lipid peroxidation.

Keywords

Cerebral Blood Flow Cerebral Ischemia Escape Latency Forebrain Ischemia Intrastriatal Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K, Yuki S, Kogure K (1988) Strong attenuation of ischemic and post ischemic brain edema in rats by a novel free radical scavenger. Stroke 19: 480–485PubMedCrossRefGoogle Scholar
  2. Akiyama Y, Akihiro I, Koshimura K, Ohue T, Yamagata S, Miwa S, Kikuchi H (1991) Effect of transient forebrain ischemia and reperfusion on function of dopaminergic neurons and dopamine reuptake in vivo rat striatum. Brain Res 561: 120–127PubMedCrossRefGoogle Scholar
  3. Asano T, Johshita H, Koide T, Takakura K (1984) Amelioration of ischaemic cerebral oedema by a free radical scavenger, AVS: 1.2-bis (nicotinamido)propane. An experimental study using a regional ischemia model in cats. Neurol Res 6: 163–168PubMedGoogle Scholar
  4. Ben-Schachar D, Youdim MBH (1991) Intranigral iron injection induces behavioural and biochemical “Parkinsonism” in rats. J Neurochem 57: 2133–2135CrossRefGoogle Scholar
  5. Betz AL (1990) Effect of the free radical scavenger dimethylthiourea in experimental cerebral ischemia. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 335–342Google Scholar
  6. Block F, Sieklucka M, Schmidt-Kastner R, Heim C, Sontag KH (1993) Metabolic changes during and after transient clamping of carotid arteries in normotensive rats. Brain Res Bull 31: 91–96PubMedCrossRefGoogle Scholar
  7. Boisvert DPJ, Schreiber C (1992) Interrelationship of excitotoxic and free radical mechanisms. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 311–320Google Scholar
  8. Braughler JM, Hall ED (1989) Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad Biol Med 6: 289–301PubMedCrossRefGoogle Scholar
  9. Bullock R, Graham DI, Chen MH, Lowe D, McCulloch J (1990) Focal cerebral ischemia in the cat: pretreatment with a competitive NMDA receptor antagonist, D-CPPene. J Cereb Blood Flow Metab 10: 668–674PubMedCrossRefGoogle Scholar
  10. Cadet JL, Ratz M, Jackson-Lewis V, Fahn S (1989) Vitamine E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioural and biochemical evidence. Brain Res 476: 10–15Google Scholar
  11. Clemens JA, Phebus LA (1988) Dopamine depletion protects striatal neurons from ischemia-induced cell death. Life Sci 42: 707–713PubMedCrossRefGoogle Scholar
  12. Cohen G (1984) Oxyradical toxicity in catecholamine neurons. Neurotoxicology 5: 82–88Google Scholar
  13. Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroradical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249: 2447–2452PubMedGoogle Scholar
  14. Cohen G, Heikkila RE, Allis B, Cabbat F, Demblec D, McNamee D, Mytilineau C, Winston B (1976) Destruction of sympathetic nerve terminals by 6hydroxydopamine: protection by 1-phenyl-3-(2-thiaxolyl)-2-thiourea, diethyldithiocarbamate, methimazole, cysteamine, ethanol, and n-butanol. J Pharmacol Exp Ther 199: 336–352PubMedGoogle Scholar
  15. Cools AR (1981) Aspects and prospects of the concept of neurochemical and cerebral organisation of aggression: introduction of new research strategies in “brain and behaviour” studies. In: Brain PF, Bendton D (eds) Biology of aggression. Fythoff and NoordhoffGoogle Scholar
  16. Cools AR, Brachten R, Heeren D, Willeman A, Ellenbroek BJ (1990) Search after neurobiological profile of individual-specific features of Wistar rats. Brain Res Bull 24: 49–69PubMedCrossRefGoogle Scholar
  17. Damsma G, Boisvert DP, Mudrick LA, Wenkstern D, Fibiger HC (1990) Effects of transient forebrain ischemia and pargyline on extra-cellular concentrations of dopamine, serotonine, and their metabolites in the rat striatum as determined by in vivo microdialysis. J Neurochem 54: 801–808PubMedCrossRefGoogle Scholar
  18. Diemer NH, Balchen T, Hu P, Frank L, Bruhn T, Berg M, Christensen T, Jorgensen MB, Johansen FF (1992) The effect of AMPA anagonists on the regional neuron loss after cerebral ischemia in the rat. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 121–127Google Scholar
  19. Dunnet SB, Iversen SD (1982) Spontaneous and drug-induced rotation following localized 6-hydroxydopamine and kainic acid-induced lesions of the neostriarum. Neuropharmacology 22: 899–908CrossRefGoogle Scholar
  20. Flamm ES, Demopoulos HB, Seligman ML, Poser R, Pietronigro DD, Ransohoff J (1978) Free radicals in cerebral ischemia. Stroke 9: 445–447PubMedCrossRefGoogle Scholar
  21. Ginsberg MD, Graham DI, Busto P (1985) Regional glucose utilization and blood flow following grated forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 18: 470–481PubMedCrossRefGoogle Scholar
  22. Ginsberg MD, Takagi K, Globus MY-T (1992) Release of neurotransmitters in the cerebral ischemia: relevance to neuronal injury. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 177–189Google Scholar
  23. Globus MYT, Busto R, Dietrich WD, Martinez E, Valdez I, Ginsberg MD (1988) Effect of ischemia on the in vitro release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51: 1455–1464PubMedCrossRefGoogle Scholar
  24. Graybiel A (1990) Neurotransmitters and neuromodulators in the basal ganglia. TINS 13: 244–254PubMedGoogle Scholar
  25. Haba K, Ogawa N, Mizukawa K, Mori A (1991) Time course of changes in lipid peroxidation, pre-and postsynaptic cholinergic indices, NMDA receptor binding and neuronal death in the gerbil hippocampus following transient ischemia. Brain Res 540: 116–120PubMedCrossRefGoogle Scholar
  26. Hall ED (1990) Lazaroids. Efficacy and anti-oxidant mechanism in experimental cerebral ischemia. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 343–350Google Scholar
  27. Hall ED, Yonkers PA (1988) Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F. Stroke 19: 340–344PubMedCrossRefGoogle Scholar
  28. Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for the involvement of oxigen free radicals and lipid peroxidation. Free Rad Biol Med 6: 303–313PubMedCrossRefGoogle Scholar
  29. Halliwell B (1978) Biochemical mechanisms accounting for the toxic action of oxygen in living organisms: the key role of superoxid dismutase. Cell Biol Int Rep 2: 113–128PubMedCrossRefGoogle Scholar
  30. Halliwell B, Gutteridge JMC (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet is 1396Google Scholar
  31. Halliwell B, Gutteridge JMC (1985) Oxygen radicals and the nervous system. Trends Neurosci 8: 22–26CrossRefGoogle Scholar
  32. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, pp 86–276Google Scholar
  33. Ito T, Kawakami M, Yamauchi Y (1986) Effect of allopurinol on ischemia and reperfusion-induced cerebral injury in spontaneously hypertensive rats. Stroke 17: 1284–1287CrossRefGoogle Scholar
  34. Jonsson G (1980) Chemical neurotoxins as denervation tools in neurobiology. Ann Rev Neurosci 3: 169–187PubMedCrossRefGoogle Scholar
  35. Kirsch JR, Phelan AM, Lange DG, Traystman RJ (1987) Reperfusion inducedGoogle Scholar
  36. free radical formation following global ischemia. Ped Res 21: 202AGoogle Scholar
  37. König J, Klippel R (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, BaltimoreGoogle Scholar
  38. Kogure K, Arai H, Abe K, Nakano M (1985) Free radical damage of the brain following ischemia. Prog Brain Res 63: 237–259PubMedCrossRefGoogle Scholar
  39. Kurumaji A, Nehls DG, Park CK, McCulloch J (1989) Effects of NMDA antagonists, MK-801 and CPP, upon local cerebral glucose use. Brain Res 496: 268–284PubMedCrossRefGoogle Scholar
  40. Läer S, Hither G, Block F, Sontag KH (1992) Acute reduction of cerebral blood flow by clamping of both carotid arteries increases dopamine release. 4th International Symposium on Pharmacology of Cerebral Ischemia, Marburg, p 67 (Abstract)Google Scholar
  41. Läer S, Block F, Hither G, Heim C, Sontag KH (1993) Effect of transient reduction of cerebral blood flow in normotensive rats on striatal dopamine release. J Neural Transm [Gen Sect] 92: 203–211CrossRefGoogle Scholar
  42. Lekieffre D, Ghribi O, Callebert J, Allix M, Plotkine M, Boulu RG (1992) Effect of kynurenic acid on ischemia-induced glutamate accumulation in the hippo-campus during four-vessel occlusion. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 105–112Google Scholar
  43. Lewin G (1985) Clinical trial for Parkinson’s disease. Science 230: 527–528PubMedCrossRefGoogle Scholar
  44. Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY (1989) Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256: H589–H593PubMedGoogle Scholar
  45. Lippert K, Welsch M, Krieglstein J (1992) The neuroprotective effect of combined treatment with dizocilpine and NBQX in vitro and in vivo. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 147–153Google Scholar
  46. Martz D, Rayos G, Schielke GP, Betz AL (1989) Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in the rat. Stroke 20: 488–494PubMedCrossRefGoogle Scholar
  47. Meldrum BS (1990) Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc Brain Metabol Rev 2: 27–57Google Scholar
  48. Meldrum BS, Moncada C, Lekieffre D, Arvin B, Smith S (1992) Strategies for cerebraprotection: post-synaptic glutamate antagonism versus inhibition of ischemia-induced glutamate release. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 115–119Google Scholar
  49. Melzacka M, Weiner N, Heim C, Sontag RH, Wesemann W (1992) Effect of transient reduction of cerebral blood flow on membrane anisotropy and lipid peroxidation in different brain areas. 4th International Symposium on Pharmacology of Cerebral Ischemia, Marburg, p 31 (Abstract)Google Scholar
  50. Moncada C, Arvin B, Lekieffre D, Chapman A, Meldrum BS (1992) The nonNMDA anagonist GYKI 52466 inhibits glutamate release induced by transient severe forebrain ischemia in rat striatum. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 155–159Google Scholar
  51. Obrenovitch TP, Sarna GS, Matsunoto T, Symon L (1990) Extracellular striatal dopamine and its metabolites during transient cerebral ischemia. J Neurochem 54: 1526–1532PubMedCrossRefGoogle Scholar
  52. Oh SM, Betz AL (1992) Interaction between radicals and excitatory amino acids in the formation of ischemic brain edema in rats. Stroke 22: 915–921CrossRefGoogle Scholar
  53. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  54. Persson L, Bolander H, Hillered L, Hardemark HG, Olsson Y, Ponten U (1989) Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 20: 641–645PubMedCrossRefGoogle Scholar
  55. Phebus LA, Clemens JA (1989) Effects of transient global, cerebral ischemia on striatal extracellular dopamine, serotonine and their metabolites. Life Sci 19: 1335–1342CrossRefGoogle Scholar
  56. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of forebrain ischemia. Ann Neurol 11: 491–498PubMedCrossRefGoogle Scholar
  57. Ragsdale CW Jr, Graybiel AM (1990) A simple ordering of neo-cortical areas established by the compartmental organization of their striatal projections. Proc Natl Acad Sci USA 87: 6196–6199PubMedCrossRefGoogle Scholar
  58. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic ischemic brain damage. Ann Neurol 19: 105–111PubMedCrossRefGoogle Scholar
  59. Sengstock GJ, Olanow CW, Dunn AJ, Arendash GW (1992) Iron induces degeneration of nigrostriatal neurons. Brain Res Bull 28: 645–649PubMedCrossRefGoogle Scholar
  60. Sheardown MJ, Hansen AJ, Eskesen K, Suzdak P, Diemer NH, Honore T (1990) Blockade of AMPA receptors in the CA1 region of the hippocampus prevents ischemia induced cell death. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 245–253Google Scholar
  61. Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3Dihydroxy-6-nitro-7-sulfamyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247: 571–574Google Scholar
  62. Siesjö BS (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–158PubMedCrossRefGoogle Scholar
  63. Siesjö BK (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1: 165–211PubMedGoogle Scholar
  64. Siesjö BK, Katsura K, Pahlmark K, Smith ML (1992) The multiple causes of ischemic brain damage: a speculative synthesis. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 511–525Google Scholar
  65. Sontag KH, Heim C, Block F, Sieklucka M, Schmidt-Kastner R, Melzacka M, Osborne N, Läer S, Hüther G, Kunkel M, Ulrich F, Bortolotto Z, Weiner N, Wesemann W (1992) Cerebral oligemic hypoxia and forebrain ischemia — common and different long-lasting consequences. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 471–479Google Scholar
  66. Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamineinduced degeneration of nigrostriatal dopamine system. Acta Physiol Scand [Suppl] 367: 69–93Google Scholar
  67. Wahl F, Allix M, Plotkine M, Boulu RG (1992) Riluzole reduces infarct size induced by focal cerebral ischemia. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 167–174Google Scholar
  68. Watson BD, Ginsberg MD (1989) Ischemic injury in brain: role of oxygen radical-mediated processes. In: Barkai A, Baran NG (eds) Arachidonic acid in the nervous system. Physiological and pathological significance. Ann NY Acad Sci 559: 269–281Google Scholar
  69. Weinberger J, Nieves-Rosa J, Cohen G (1985) Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine. Stroke 16: 864–870PubMedCrossRefGoogle Scholar
  70. Whishaw IQ (1987) Hippocampal granule cell and CA 3–4 lesions impair formation of a place learning set in the rat and induce reflex epilepsy. Behav Brain Res 24: 59–72PubMedCrossRefGoogle Scholar
  71. Whishaw IQ, Dunnett SB (1985) Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res 18: 11–29PubMedCrossRefGoogle Scholar
  72. Yamamoto M, Shima T, Uozumi T, Sogabe T, Yamada K, Kawasaki T (1983) A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of tocopherol administration. Stroke 14: 977–982PubMedCrossRefGoogle Scholar
  73. Yoshida S, Abe K, Busto R, Watson BD, Kogure K, Ginsberg MD (1982) Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 245: 307–316PubMedCrossRefGoogle Scholar
  74. Young W, Wojak JC, DeCresito V (1988) 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke 19: 1013–1019PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • C. Heim
    • 2
  • W. Kolasiewicz
    • 1
    • 3
  • T. Jaros
    • 1
    • 3
  • K.-H. Sontag
    • 1
    • 3
  1. 1.Department of PharmacologyMax-Planck-Institute for Experimental MedicineGöttingenFederal Republic of Germany
  2. 2.Department of PsychiatryUniversity of GöttingenGöttingenFederal Republic of Germany
  3. 3.Veterinär-biologisches LaborNortheimFederal Republic of Germany

Personalised recommendations