Pathogenesis of Parkinson’s disease: iron and mitochondrial DNA deletion

  • Y. Mizuno
  • H. Mochizuki
  • K. Nishi
  • S.-i. Ikebe
  • N. Hattori
  • Y. Hattori-Nakagawa
Part of the Key Topics in Brain Research book series (KEYTOPICS)


Numbers of biochemical abnormalities which may be relevant to the degenerative process of nigral dopaminergic neurons have been described. These include accumulation of iron in substantia nigra, decrease in the enzymatic activity and the amount of subunits of mitochondrial complex I, increase in the amount of deleted mitochondrial DNA, and possible increase in oxygen derived free radicals. Recent progress in this field is reviewed in this communication. Although the primary cause of Parkinson’s disease is still unknown, these abnormalities listed above will contribute to the progression of the degenerative process. In addition, we report our recent data on the toxic effects of iron and synthetic dopamine melanin on cultured dopaminergic neurons, and discuss possible interaction of iron and mitochondrial DNA.


Substantia Nigra Ubiquinone Oxidoreductase Nigral Neuron Parkinsonian Brain Electron Transfer Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albores R, Heafsey EJ, Drucker G, Fields JZ, Collins MA (1990) Mitochondrial respiratory inhibition by N-methylated beta-carboline derivatives structurally resembling N-methyl-4-phenylpyridine. Proc Natl Acad Sci USA 87: 9368–9372PubMedCrossRefGoogle Scholar
  2. Ambani LM, Van Woert H, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32: 114–118PubMedCrossRefGoogle Scholar
  3. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coalson AR, Drouin J, Eperon IC, Nierlich DD, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 90: 457–465Google Scholar
  4. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683–717Google Scholar
  5. Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR (1992) Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 339: 10171018Google Scholar
  6. Bindoff LA, Birch-Machin M, Cartlidge NEF, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 11: 49CrossRefGoogle Scholar
  7. Ben-Shachar D, Riederer P, Youdim MBH (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57: 1609–1614PubMedCrossRefGoogle Scholar
  8. Capaldi RA (1982) Arrangement of proteins in the mitochondrial inner membrane. Biochem Biophys Acta 694: 291–306PubMedGoogle Scholar
  9. Caron F, Jacq C, Rouviere-Yaniv (1979) Characterization of a histon-like protein extracted from mitochondria. Proc Natl Acad Sci USA 76: 4265–4269Google Scholar
  10. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, cause G–T and A —003E C substitutions. J Biol Chem 267: 166–172Google Scholar
  11. Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314: 592–597PubMedCrossRefGoogle Scholar
  12. Chomyn A, Cleeter MWJ, Ragan CI, Riley M, Dolittle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA codes for an NADH dehydrogenase subunit. Science 234: 614–618PubMedCrossRefGoogle Scholar
  13. Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28: 693–705PubMedCrossRefGoogle Scholar
  14. Collins MA, Neafsey EJ, Matsubara K, Cobuzzi RJ Jr, Rollema H (1992) IndolN-methylated 13-carbolinium ions as potential brain-bioactivated neurotoxins. Brain Res 570: 154–160PubMedCrossRefGoogle Scholar
  15. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondria) DNA deletions in human brain; regional variability and increase with advanced age. Nature Genet 2: 324–329PubMedCrossRefGoogle Scholar
  16. Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucl Acids Res 18: 6927–6933PubMedCrossRefGoogle Scholar
  17. Das KC, Abramson MB, Katzman R (1976) Neural pigments: spectroscopic characterization of human brain melanin. J Neurochem 40: 601–605Google Scholar
  18. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989a) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389PubMedCrossRefGoogle Scholar
  19. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989b) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52: 1830–1836PubMedCrossRefGoogle Scholar
  20. Drucker G, Raikoff K, Neafsey EJ, Collins MA (1990) Dopamine uptake inhibitory capacities of beta-carboline and 3,4-dihydro-beta-carboline analogs of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ( MPTP) oxidation products. Brain Res 509: 125–133Google Scholar
  21. Gibb WRG, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 388–396PubMedCrossRefGoogle Scholar
  22. Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346PubMedCrossRefGoogle Scholar
  23. Gross NJ, Getz GS, Rubinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissue of rat. J Biol Chem 244: 1552–1562PubMedGoogle Scholar
  24. Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Acta Neurol Scand 126: 23–33CrossRefGoogle Scholar
  25. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069PubMedCrossRefGoogle Scholar
  26. Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M, Ozawa T (1991) Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J 121: 1735–1742PubMedCrossRefGoogle Scholar
  27. Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on Complex I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 30: 563–571Google Scholar
  28. Hayakawa M, Ogawa T, Sugiyama S, Tanaka M, Ozawa T (1991 a) Massive conversion of guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine. Biochem Biophys Res Commun 176: 87–93Google Scholar
  29. Hayakawa M, Toni K, Sugiyama S, Tanaka M, Ozawa T (1991b) Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179: 1023–1029PubMedCrossRefGoogle Scholar
  30. Heikkila RE, Nicklas WL, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl1,2,5,6-tetrahydropyridine toxicity. Neurosci Lett 62: 389–394PubMedCrossRefGoogle Scholar
  31. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451PubMedCrossRefGoogle Scholar
  32. Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170: 1044–1048PubMedCrossRefGoogle Scholar
  33. Jellinger K, Paulus W, Grundke-Iqbal P, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s disease. J Neural Transm [P-D Sect] 2: 327–340CrossRefGoogle Scholar
  34. Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171PubMedCrossRefGoogle Scholar
  35. Johannsen P, Velander G, Mai J, Thorling EB, Dupont E (1991) Glutathione peroxidase in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 679–682PubMedCrossRefGoogle Scholar
  36. Kagawa Y, Sone N (1979) DCCD-sensitive ATPase (TF0 • Fi) from a thermophilic bacterium: purification, dissociation into functional subunits, and reconstitution into vesicles capable of energy transformation. In: Fleischer S, Packer L (eds) Methods in enzymology, vol LV. Academic Press, New York, pp 364–372Google Scholar
  37. Kish SJ, Morito C, Hornykiewicz 0 (1985) Glutathione peroxidase activity in Parkinson’s disease. Neurosci Lett 58: 343–346Google Scholar
  38. Koga S, Nakano M (1992) A high involvement of 02-possibly generated in inner membranes for iron-induced microsomal lipid peroxidation. Biochem Biophys Res Commun 186: 1087–1093PubMedCrossRefGoogle Scholar
  39. Kondo K, Watanabe K (1993) Lifestyles, risk factors, and inherited predispositions in Parkinson’s disease: preliminary report of a case-control study. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Advances in neurology, vol 60. Raven Press, New York, pp 346–351Google Scholar
  40. Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AHV (1992) Platelet mitochondrial function in Parkinson’s disease. Ann Neurol 32: 782–788PubMedCrossRefGoogle Scholar
  41. Kunkel TA, Loeb LA (1981) Fidelity of mammalian DNA polymerase. Science 213: 765–767PubMedCrossRefGoogle Scholar
  42. Lestienne P, Nelson J, Riederer P, Jellinger K, Reichmann H (1990) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 55: 1810–1812PubMedCrossRefGoogle Scholar
  43. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet is 642–645Google Scholar
  44. Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang C, Marzuki S (1990) Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem Int 22: 1067–1076PubMedGoogle Scholar
  45. Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115: 333–342PubMedCrossRefGoogle Scholar
  46. Marttila RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci 86: 321–331PubMedCrossRefGoogle Scholar
  47. Merle P, Kadenbach B (1980) The subunit composition of mammalian cytochrome c oxidase. Eur J Biochem 105: 499–507PubMedCrossRefGoogle Scholar
  48. Minakami H, Arai H, Nakano M, Sugioka K, Suzuki S, Sotomatsu A (1988) A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation. Biochem Biophys Res Commun 153: 973–978PubMedCrossRefGoogle Scholar
  49. Mizuno Y, Sone N, Saitoh T (1986) Dopaminergic neurotoxin, MPTP and MPP`, inhibit mitochondrial NADH-ubiquinone oxidoreductase activity. Proc Jpn Acad Ser B 62: 261–263Google Scholar
  50. Mizuno Y, Sone N, Saitoh T (1987) Effects of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of enzymes in the electron transport system in mouse brain. J Neurochem 48: 1787–1793PubMedCrossRefGoogle Scholar
  51. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163: 1450–1455PubMedCrossRefGoogle Scholar
  52. Mizuno Y, Suzuki K, Ohta S (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and a preliminary observation in Parkinson’s disease. J Neurol Sci 96: 49–57PubMedCrossRefGoogle Scholar
  53. Mochizuki H, Nishi K, Mizuno Y (1993) Iron-melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 2: 1–7Google Scholar
  54. Nagatsu T, Yoshida M (1988) An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterine in the nigrostriatal regions. Neurosci Lett 87: 178–182PubMedCrossRefGoogle Scholar
  55. Nakagawa-Hattori Y, Yoshino H, Kondo T, Mizuno Y, Horai S (1992) Is Parkinson’s disease a mitochondrial disorder? J Neurol Sci 107: 29–33PubMedCrossRefGoogle Scholar
  56. Naoi M, Matsuura S, Takahashi T, Nagatsu T (1989a) A N-methyltransferase in human brain catalyzes N-methylation of 1,2,3,4-tetrahydroisoquinoline into N-methyl-1,2,3,4-tetrahyroisoquinoline, a precursor of a dopaminergic neuro-toxin N-methylisoquinolinium ion. Biochem Biophys Res Commun 161: 1213–1219PubMedCrossRefGoogle Scholar
  57. Naoi M, Matsuura S, Parvez H, Takahashi T, Hirata Y, Minami M, Nagatsu T (1989b) Oxidation of N-methyl- 1,2,3,4-tetrahydroisoquinoline into the Nmethyl-isoquinolinium ion by monoamine oxidase. J Neurochem 52: 653–655PubMedCrossRefGoogle Scholar
  58. Nicklas WL, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36: 2503–2508PubMedCrossRefGoogle Scholar
  59. Nishi K, Akins PT, Surmier DJ, Kitai ST (1990) Muscarinic regulation of cyclic AMP metabolism in rat neostriatal cultures. Brain Res 543: 111–116CrossRefGoogle Scholar
  60. Niwa T, Takeda N, Kaneda N, Hashizume Y, Nagatsu T (1987) Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroisoquinoline in parkinsonian and normal human brains. Biochem Biophys Res Commun 144: 1084–1089PubMedCrossRefGoogle Scholar
  61. Ohta S, Kohno M, Makino Y, Tachikawa O, Hirobe M (1987) Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline are present in the human brain: relation to Parkinson’s disease. Biomed Res 8: 453–456Google Scholar
  62. Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y (1990) Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun 172: 483–489PubMedCrossRefGoogle Scholar
  63. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26: 719–723PubMedCrossRefGoogle Scholar
  64. Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supra-nuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67: 269–274PubMedCrossRefGoogle Scholar
  65. Ragan CI (1987) Structure of NADH-ubiquinone reductase (Complex I). In: Lee CP (ed) Current topics in bioenergetics: structure, biogenesis, and assembly of energy transducing enzyme systems. Academic Press, San Diego, pp 1–36Google Scholar
  66. Ragan CI, Galante YM, Hatefi Y (1982) Purification of three iron-sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 21: 2518–2514PubMedCrossRefGoogle Scholar
  67. Rajput AH, Uitti RJ, Stern W, Laverty K, O’Donnell K, O’Donnel D, Yuen WK, Dua A (1987) Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 14: 414–418PubMedGoogle Scholar
  68. Ramsay RR, Salach JI, Dadgar J, Singer TP (1986) Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem Biophys Res Commun 135: 269–275PubMedCrossRefGoogle Scholar
  69. Reichmann H, Riederer P, Seufert S (1990) Disturbances of the respiratory chain in brain from patients with Parkinson’s disease. Mov Disord 5: 28 (abstr)Google Scholar
  70. Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson’s disease and the electron transport chain in postmortem brain. In: Narabayashi H, Nagastu T, Yanagisawa N, Mizuno Y (eds) Advances in neurology, vol 60. Raven Press, New York, pp 297–299Google Scholar
  71. Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467PubMedCrossRefGoogle Scholar
  72. Riederer P, Sofic E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520PubMedCrossRefGoogle Scholar
  73. Saggue H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD (1989) A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 53: 692–697CrossRefGoogle Scholar
  74. Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet is 1269Google Scholar
  75. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990a) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827PubMedCrossRefGoogle Scholar
  76. Schapira AHV, Holt IJ, Sweeney M, Harding AE, Jenner P, Marsden CD (19906) Mitochondrial DNA analysis in Parkinson’s disease. Mov Disord 5: 294–297Google Scholar
  77. Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC (1991) Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann Neurol 30: 332–339PubMedCrossRefGoogle Scholar
  78. Simonetti S, Chen X, DiMauro S, Schon EA (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180: 113–122PubMedGoogle Scholar
  79. Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP. FEBS Lett 274: 1–8PubMedCrossRefGoogle Scholar
  80. Smith CA, Gough AC, Leigh PN, Summers BA, Harding AE, Maranganore DM, Sturman SG, Schapira AV, Williams AC, Spurr NK, Wolf CR (1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 339: 1375–1377PubMedCrossRefGoogle Scholar
  81. Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56: 978–982PubMedCrossRefGoogle Scholar
  82. Soong NW, Hinton DR, Cortopassi G, Amheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet 2: 318–323PubMedCrossRefGoogle Scholar
  83. Suzuki K, Mizuno Y, Yamauchi Y, Nagatsu T, Yoshida M (1992) Selective inhibition of complex I by N-methylisoquinolinium ion and N-methyl1,2,3,4-tetrahydroisoquinoline in isolated mitochondria prepared from mouse brain. J Neurol Sci 109: 219–223PubMedCrossRefGoogle Scholar
  84. Tanaka M, Sato W, Ohno K, Yamamoto T, Ozawa T (1989) Direct sequencing of deleted mitochondrial DNA in myopathie patients. Biochem Biophys Res Commun 184: 156–163CrossRefGoogle Scholar
  85. Tanner CM, Chen B, Wang W, Peng M, Liu Z, Liang X, Kao LC, Gilley DW, Goeta CG, Schoenberg BS (1989) Environmental factors and Parkinson’s disease: a case-control study in China. Neurology 39: 660–664PubMedGoogle Scholar
  86. Tasaki Y, Makino Y, Ohta S, Hirobe M (1991) 1-Methyl-1,2,3,4-tetrahydroisoquinoline, decreasing in 1-methyl-4-phenyl-1,2,3,6-terahydropyridine-treated mouse, prevents parkinsonism-like behavior abnormalities. J Neurochem 57: 1940–1943Google Scholar
  87. Walker JE (1992) The NADH: ubiquinone oxidoreductase of respiratory chains. Quart Rev Biophys 25: 253–324CrossRefGoogle Scholar
  88. Walker JE, Arimendi JM, Dupuis A, Fearnley IM, Finel M, Medd SM, Pilkington SJ, Runswick MJ, Skehel JM (1992) Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria: application of anovel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol 226: 1051–1072PubMedCrossRefGoogle Scholar
  89. Weiss H, Friedrich T (1991) Redox linked proton translocation by NADH- ubiquinone reductase (complex I). J Bioenerget Biomembr 23: 743–754CrossRefGoogle Scholar
  90. Yen T-C, Su J-H, King K-L, Wei Y-H (1991) Ageing-associated 5 kb deletion in human liver mitochondria) DNA. Biochem Biophys Res Commun 178: 124–131PubMedCrossRefGoogle Scholar
  91. Yoshida M, Niwa T, Nagatsu T (1990) Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahydroisoquinoline: the behavioral and biochemical changes. Neurosci Lett 119: 109–113PubMedCrossRefGoogle Scholar
  92. Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y (1992) Mitochondrial complex I and complex II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm [P-D Sect] 4: 27–34CrossRefGoogle Scholar
  93. Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in ion and melanin induced neurodegeneration? Acta Neurol Scand 126: 47–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • Y. Mizuno
    • 2
  • H. Mochizuki
    • 1
  • K. Nishi
    • 1
  • S.-i. Ikebe
    • 1
  • N. Hattori
    • 1
  • Y. Hattori-Nakagawa
    • 1
  1. 1.Department of NeurologyJuntendo University School of MedicineJapan
  2. 2.Department of NeurologyJuntendo University School of MedicineBunkyo, Tokyo 113Japan

Personalised recommendations