Skip to main content

Pathogenesis of Parkinson’s disease: iron and mitochondrial DNA deletion

  • Conference paper

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

Numbers of biochemical abnormalities which may be relevant to the degenerative process of nigral dopaminergic neurons have been described. These include accumulation of iron in substantia nigra, decrease in the enzymatic activity and the amount of subunits of mitochondrial complex I, increase in the amount of deleted mitochondrial DNA, and possible increase in oxygen derived free radicals. Recent progress in this field is reviewed in this communication. Although the primary cause of Parkinson’s disease is still unknown, these abnormalities listed above will contribute to the progression of the degenerative process. In addition, we report our recent data on the toxic effects of iron and synthetic dopamine melanin on cultured dopaminergic neurons, and discuss possible interaction of iron and mitochondrial DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albores R, Heafsey EJ, Drucker G, Fields JZ, Collins MA (1990) Mitochondrial respiratory inhibition by N-methylated beta-carboline derivatives structurally resembling N-methyl-4-phenylpyridine. Proc Natl Acad Sci USA 87: 9368–9372

    Article  PubMed  CAS  Google Scholar 

  • Ambani LM, Van Woert H, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32: 114–118

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coalson AR, Drouin J, Eperon IC, Nierlich DD, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 90: 457–465

    Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683–717

    CAS  Google Scholar 

  • Armstrong M, Daly AK, Cholerton S, Bateman DN, Idle JR (1992) Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 339: 10171018

    Google Scholar 

  • Bindoff LA, Birch-Machin M, Cartlidge NEF, Parker WD Jr, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 11: 49

    Article  Google Scholar 

  • Ben-Shachar D, Riederer P, Youdim MBH (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57: 1609–1614

    Article  PubMed  CAS  Google Scholar 

  • Capaldi RA (1982) Arrangement of proteins in the mitochondrial inner membrane. Biochem Biophys Acta 694: 291–306

    PubMed  CAS  Google Scholar 

  • Caron F, Jacq C, Rouviere-Yaniv (1979) Characterization of a histon-like protein extracted from mitochondria. Proc Natl Acad Sci USA 76: 4265–4269

    CAS  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, cause G–T and A —003E C substitutions. J Biol Chem 267: 166–172

    Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314: 592–597

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A, Cleeter MWJ, Ragan CI, Riley M, Dolittle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA codes for an NADH dehydrogenase subunit. Science 234: 614–618

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28: 693–705

    Article  PubMed  CAS  Google Scholar 

  • Collins MA, Neafsey EJ, Matsubara K, Cobuzzi RJ Jr, Rollema H (1992) IndolN-methylated 13-carbolinium ions as potential brain-bioactivated neurotoxins. Brain Res 570: 154–160

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondria) DNA deletions in human brain; regional variability and increase with advanced age. Nature Genet 2: 324–329

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucl Acids Res 18: 6927–6933

    Article  PubMed  CAS  Google Scholar 

  • Das KC, Abramson MB, Katzman R (1976) Neural pigments: spectroscopic characterization of human brain melanin. J Neurochem 40: 601–605

    Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989a) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52: 381–389

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989b) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52: 1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Drucker G, Raikoff K, Neafsey EJ, Collins MA (1990) Dopamine uptake inhibitory capacities of beta-carboline and 3,4-dihydro-beta-carboline analogs of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ( MPTP) oxidation products. Brain Res 509: 125–133

    Google Scholar 

  • Gibb WRG, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 388–396

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Gross NJ, Getz GS, Rubinowitz M (1969) Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissue of rat. J Biol Chem 244: 1552–1562

    PubMed  CAS  Google Scholar 

  • Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Acta Neurol Scand 126: 23–33

    Article  CAS  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069

    Article  PubMed  CAS  Google Scholar 

  • Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M, Ozawa T (1991) Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J 121: 1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Tanaka M, Ozawa T, Mizuno Y (1991) Immunohistochemical studies on Complex I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 30: 563–571

    Google Scholar 

  • Hayakawa M, Ogawa T, Sugiyama S, Tanaka M, Ozawa T (1991 a) Massive conversion of guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine. Biochem Biophys Res Commun 176: 87–93

    Google Scholar 

  • Hayakawa M, Toni K, Sugiyama S, Tanaka M, Ozawa T (1991b) Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179: 1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Heikkila RE, Nicklas WL, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl1,2,5,6-tetrahydropyridine toxicity. Neurosci Lett 62: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170: 1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal P, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s disease. J Neural Transm [P-D Sect] 2: 327–340

    Article  CAS  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra parkinsonian brains: an X-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Johannsen P, Velander G, Mai J, Thorling EB, Dupont E (1991) Glutathione peroxidase in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 679–682

    Article  PubMed  CAS  Google Scholar 

  • Kagawa Y, Sone N (1979) DCCD-sensitive ATPase (TF0 • Fi) from a thermophilic bacterium: purification, dissociation into functional subunits, and reconstitution into vesicles capable of energy transformation. In: Fleischer S, Packer L (eds) Methods in enzymology, vol LV. Academic Press, New York, pp 364–372

    Google Scholar 

  • Kish SJ, Morito C, Hornykiewicz 0 (1985) Glutathione peroxidase activity in Parkinson’s disease. Neurosci Lett 58: 343–346

    CAS  Google Scholar 

  • Koga S, Nakano M (1992) A high involvement of 02-possibly generated in inner membranes for iron-induced microsomal lipid peroxidation. Biochem Biophys Res Commun 186: 1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Watanabe K (1993) Lifestyles, risk factors, and inherited predispositions in Parkinson’s disease: preliminary report of a case-control study. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Advances in neurology, vol 60. Raven Press, New York, pp 346–351

    Google Scholar 

  • Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AHV (1992) Platelet mitochondrial function in Parkinson’s disease. Ann Neurol 32: 782–788

    Article  PubMed  CAS  Google Scholar 

  • Kunkel TA, Loeb LA (1981) Fidelity of mammalian DNA polymerase. Science 213: 765–767

    Article  PubMed  CAS  Google Scholar 

  • Lestienne P, Nelson J, Riederer P, Jellinger K, Reichmann H (1990) Normal mitochondrial genome in brain from patients with Parkinson’s disease and complex I defect. J Neurochem 55: 1810–1812

    Article  PubMed  CAS  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet is 642–645

    Google Scholar 

  • Linnane AW, Baumer A, Maxwell RJ, Preston H, Zhang C, Marzuki S (1990) Mitochondrial gene mutation: the ageing process and degenerative diseases. Biochem Int 22: 1067–1076

    PubMed  CAS  Google Scholar 

  • Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115: 333–342

    Article  PubMed  Google Scholar 

  • Marttila RJ, Lorentz H, Rinne UK (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease: increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci 86: 321–331

    Article  PubMed  CAS  Google Scholar 

  • Merle P, Kadenbach B (1980) The subunit composition of mammalian cytochrome c oxidase. Eur J Biochem 105: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Minakami H, Arai H, Nakano M, Sugioka K, Suzuki S, Sotomatsu A (1988) A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation. Biochem Biophys Res Commun 153: 973–978

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Sone N, Saitoh T (1986) Dopaminergic neurotoxin, MPTP and MPP`, inhibit mitochondrial NADH-ubiquinone oxidoreductase activity. Proc Jpn Acad Ser B 62: 261–263

    Google Scholar 

  • Mizuno Y, Sone N, Saitoh T (1987) Effects of 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of enzymes in the electron transport system in mouse brain. J Neurochem 48: 1787–1793

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163: 1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Suzuki K, Ohta S (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and a preliminary observation in Parkinson’s disease. J Neurol Sci 96: 49–57

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Nishi K, Mizuno Y (1993) Iron-melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 2: 1–7

    Google Scholar 

  • Nagatsu T, Yoshida M (1988) An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterine in the nigrostriatal regions. Neurosci Lett 87: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa-Hattori Y, Yoshino H, Kondo T, Mizuno Y, Horai S (1992) Is Parkinson’s disease a mitochondrial disorder? J Neurol Sci 107: 29–33

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Matsuura S, Takahashi T, Nagatsu T (1989a) A N-methyltransferase in human brain catalyzes N-methylation of 1,2,3,4-tetrahydroisoquinoline into N-methyl-1,2,3,4-tetrahyroisoquinoline, a precursor of a dopaminergic neuro-toxin N-methylisoquinolinium ion. Biochem Biophys Res Commun 161: 1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Matsuura S, Parvez H, Takahashi T, Hirata Y, Minami M, Nagatsu T (1989b) Oxidation of N-methyl- 1,2,3,4-tetrahydroisoquinoline into the Nmethyl-isoquinolinium ion by monoamine oxidase. J Neurochem 52: 653–655

    Article  PubMed  CAS  Google Scholar 

  • Nicklas WL, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36: 2503–2508

    Article  PubMed  CAS  Google Scholar 

  • Nishi K, Akins PT, Surmier DJ, Kitai ST (1990) Muscarinic regulation of cyclic AMP metabolism in rat neostriatal cultures. Brain Res 543: 111–116

    Article  Google Scholar 

  • Niwa T, Takeda N, Kaneda N, Hashizume Y, Nagatsu T (1987) Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroisoquinoline in parkinsonian and normal human brains. Biochem Biophys Res Commun 144: 1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Kohno M, Makino Y, Tachikawa O, Hirobe M (1987) Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline are present in the human brain: relation to Parkinson’s disease. Biomed Res 8: 453–456

    Google Scholar 

  • Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y (1990) Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun 172: 483–489

    Article  PubMed  CAS  Google Scholar 

  • Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26: 719–723

    Article  PubMed  Google Scholar 

  • Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supra-nuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67: 269–274

    Article  PubMed  CAS  Google Scholar 

  • Ragan CI (1987) Structure of NADH-ubiquinone reductase (Complex I). In: Lee CP (ed) Current topics in bioenergetics: structure, biogenesis, and assembly of energy transducing enzyme systems. Academic Press, San Diego, pp 1–36

    Google Scholar 

  • Ragan CI, Galante YM, Hatefi Y (1982) Purification of three iron-sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 21: 2518–2514

    Article  PubMed  CAS  Google Scholar 

  • Rajput AH, Uitti RJ, Stern W, Laverty K, O’Donnell K, O’Donnel D, Yuen WK, Dua A (1987) Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson’s disease. Can J Neurol Sci 14: 414–418

    PubMed  CAS  Google Scholar 

  • Ramsay RR, Salach JI, Dadgar J, Singer TP (1986) Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem Biophys Res Commun 135: 269–275

    Article  PubMed  CAS  Google Scholar 

  • Reichmann H, Riederer P, Seufert S (1990) Disturbances of the respiratory chain in brain from patients with Parkinson’s disease. Mov Disord 5: 28 (abstr)

    Google Scholar 

  • Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson’s disease and the electron transport chain in postmortem brain. In: Narabayashi H, Nagastu T, Yanagisawa N, Mizuno Y (eds) Advances in neurology, vol 60. Raven Press, New York, pp 297–299

    Google Scholar 

  • Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85: 6465–6467

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Saggue H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD (1989) A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 53: 692–697

    Article  Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet is 1269

    Google Scholar 

  • Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990a) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54: 823–827

    Article  PubMed  CAS  Google Scholar 

  • Schapira AHV, Holt IJ, Sweeney M, Harding AE, Jenner P, Marsden CD (19906) Mitochondrial DNA analysis in Parkinson’s disease. Mov Disord 5: 294–297

    Google Scholar 

  • Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC (1991) Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann Neurol 30: 332–339

    Article  PubMed  CAS  Google Scholar 

  • Simonetti S, Chen X, DiMauro S, Schon EA (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180: 113–122

    PubMed  CAS  Google Scholar 

  • Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP. FEBS Lett 274: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Gough AC, Leigh PN, Summers BA, Harding AE, Maranganore DM, Sturman SG, Schapira AV, Williams AC, Spurr NK, Wolf CR (1992) Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson’s disease. Lancet 339: 1375–1377

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MBH (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56: 978–982

    Article  PubMed  CAS  Google Scholar 

  • Soong NW, Hinton DR, Cortopassi G, Amheim N (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet 2: 318–323

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Mizuno Y, Yamauchi Y, Nagatsu T, Yoshida M (1992) Selective inhibition of complex I by N-methylisoquinolinium ion and N-methyl1,2,3,4-tetrahydroisoquinoline in isolated mitochondria prepared from mouse brain. J Neurol Sci 109: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Sato W, Ohno K, Yamamoto T, Ozawa T (1989) Direct sequencing of deleted mitochondrial DNA in myopathie patients. Biochem Biophys Res Commun 184: 156–163

    Article  Google Scholar 

  • Tanner CM, Chen B, Wang W, Peng M, Liu Z, Liang X, Kao LC, Gilley DW, Goeta CG, Schoenberg BS (1989) Environmental factors and Parkinson’s disease: a case-control study in China. Neurology 39: 660–664

    PubMed  CAS  Google Scholar 

  • Tasaki Y, Makino Y, Ohta S, Hirobe M (1991) 1-Methyl-1,2,3,4-tetrahydroisoquinoline, decreasing in 1-methyl-4-phenyl-1,2,3,6-terahydropyridine-treated mouse, prevents parkinsonism-like behavior abnormalities. J Neurochem 57: 1940–1943

    Google Scholar 

  • Walker JE (1992) The NADH: ubiquinone oxidoreductase of respiratory chains. Quart Rev Biophys 25: 253–324

    Article  CAS  Google Scholar 

  • Walker JE, Arimendi JM, Dupuis A, Fearnley IM, Finel M, Medd SM, Pilkington SJ, Runswick MJ, Skehel JM (1992) Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria: application of anovel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol 226: 1051–1072

    Article  PubMed  CAS  Google Scholar 

  • Weiss H, Friedrich T (1991) Redox linked proton translocation by NADH- ubiquinone reductase (complex I). J Bioenerget Biomembr 23: 743–754

    Article  CAS  Google Scholar 

  • Yen T-C, Su J-H, King K-L, Wei Y-H (1991) Ageing-associated 5 kb deletion in human liver mitochondria) DNA. Biochem Biophys Res Commun 178: 124–131

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Niwa T, Nagatsu T (1990) Parkinsonism in monkeys produced by chronic administration of an endogenous substance of the brain, tetrahydroisoquinoline: the behavioral and biochemical changes. Neurosci Lett 119: 109–113

    Article  PubMed  CAS  Google Scholar 

  • Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y (1992) Mitochondrial complex I and complex II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm [P-D Sect] 4: 27–34

    Article  CAS  Google Scholar 

  • Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in ion and melanin induced neurodegeneration? Acta Neurol Scand 126: 47–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Mizuno, Y., Mochizuki, H., Nishi, K., Ikebe, Si., Hattori, N., Hattori-Nakagawa, Y. (1993). Pathogenesis of Parkinson’s disease: iron and mitochondrial DNA deletion. In: Riederer, P., Youdim, M.B.H. (eds) Iron in Central Nervous System Disorders. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9322-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9322-8_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82520-4

  • Online ISBN: 978-3-7091-9322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics