Skip to main content

Cellular and regional maintenance of iron homeostasis in the brain: normal and diseased states

  • Conference paper
Iron in Central Nervous System Disorders

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

Iron is an essential trophic factor for normal development of the brain and for maintenance of normal neurological function throughout life. However, iron when not regulated, can become a potent toxin through its ability to induce lipid peroxidative damage. Consequently, the brain has an exquisite system to assure the availability and timely delivery of iron. In this manuscript we review the cellular and regional distribution of the proteins involved in mediating the regulation of iron in the brain. These proteins, transferrin and its receptor (iron mobilization) and ferritin (iron storage) are thus responsible (along with the cells in which they reside) for maintaining iron homeostasis in the brain. Within the brain, iron and iron regulatory proteins have a region specific distribution being especially abundant in areas associated with motor functions. At the cellular level oligodendrocytes are the predominant cell type to stain for iron, transferrin and ferritin; although, numerous ferritin-positive microglial cells are present. Preliminary data from an analysis of isoforms of ferritin in the brain which may provide insight into the role of each cell type in iron regulation are discussed herein.

We further review the cellular and regional alterations which occur in the brain in such diseases as Alzheimer’s, Parkinson’s and Multiple Sclerosis in which a disruption in iron homeostasis may be part of the pathogenesis of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldred AR, Dickson FW, Marley PD, Schreiber G (1987) Distribution of transferrin synthesis in brain and other tissues in the rat. J Biol Chem 262: 5293–5297

    PubMed  CAS  Google Scholar 

  • Arosio P, Levi S, Santambrogio P, Cozzi A, Luzzago A, Cesareni G, Albertini A (1991) Structural and functional studies of human ferritin H and L chains. In: Albertini A, Lenfant CL, Mannucci PM, Sixma JJ (eds) Biotechnology of plasma proteins. Karger, Basel (Curr Stud Hematol Blood Trans: 127–131 )

    Google Scholar 

  • Aschner M, Aschner JL (1990), Mangabese transport across the blood brain barrier: relationship to iron homeostasis. Brain Res Bull 24: 857

    Article  PubMed  CAS  Google Scholar 

  • Barkai AI, Durkin M, Dwork AJ, Nelson HD (1991) Autoradiographic study of iron-binding sites in the rat brain: distribution and relationship to aging. J Neurosci Res 29: 390–395

    Article  PubMed  CAS  Google Scholar 

  • Bartlett WP, Li X-S, Connor JR (1991) Expression of transferrin mRNA in the CNS of normal and jimpy mice. J Neurochem 57: 318

    Article  PubMed  CAS  Google Scholar 

  • Benkovic S, Connor JR (1993) Ferritin, transferrin and iron in normal and aged rat brains. J Comp Neurol 337: 1

    Article  Google Scholar 

  • Bloch B, Popovici T, Lovin MJ, Tuil D, Rahn A (1985) Transferrin gene expression visualized in oligodendrocytes of the rat brain using in situ hybridization and immunohistochemistry. Proc Natl Acad Sci USA 82: 6706

    Article  PubMed  CAS  Google Scholar 

  • Connor JR (1992) Proteins of iron regulation in the brain in Alzheimer’s disease. In: Lauffer RB (ed) Iron and human disease. CRC Press, Boca Raton, pp 365393

    Google Scholar 

  • Connor JR, Fine RE (1986) The distribution of transferrin immunoreactivity in the rat central nervous system. Brain Res 368: 319–328

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL (1990) Altered cellular distribution of iron in the central nervous system of myelin deficient rats. Neuroscience 34: 265

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Phillips TM, Lakshman MR, Barron KD, Fine RE, Csiza CK (1987) Regional variation in the levels of transferrin in the CNS of normal and myelin-deficient rats. J Neurochem 49: 1523–1529

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Menzies SL, St. Martin S, Mufson EJ (1990) The cellular distribution of transferrin, ferritin and iron in the human brain. J Neurosci Res 27: 595

    Google Scholar 

  • Connor JR, Menzies SL, St. Martin S, Fine RE, Mufson EJ (1992) Altered cellular distribution of transferrin, ferritin and iron Alzheimer’s disease brains. J Neurosci Res 31: 75–83

    Google Scholar 

  • Connor JR, Boeshore KL, Benkovic SA (1992) Isoforms of ferritin have a distinct cellular distribution in the brain. Mol Biol Cell 3: 84A

    Google Scholar 

  • Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992) The regional distribution of iron and iron regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31: 327–335

    Article  PubMed  CAS  Google Scholar 

  • Craelius W, Migdal MW, Luessenhop CP, Sugar A, Mihalakis I (1982) Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med 106: 397

    PubMed  CAS  Google Scholar 

  • Dallman PR, Spirito RA (1977) Brain iron in the rat: extremely slow turnover in normal rat may explain the long-lasting effect of early iron-deficiency. J Nutr 107: 1075–1081

    PubMed  CAS  Google Scholar 

  • Dexter D, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55: 16

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Brain 114: 1953–1975

    Article  PubMed  Google Scholar 

  • Dicker E, Cederbaum AI (1990) Generatios of reactive oxygen spedies and reduction of ferric chelates by microsomes in the presence of a reconstituted system containing ethanol, NAD+ and alcohol dehydrogenase. Alcohol Clin Exp Res 14: 238–244

    Google Scholar 

  • Diezel PB (1955) Iron in the brain: a chemical and histochemical examination. In: Waelsch H (ed) Biochemistry of the developing nervous system. Academic Press, New York

    Google Scholar 

  • Drayer B, Burger P, Hurwita B, Dawson D, Cain J (1987) Reduced signal intensity on MR images of thalamus and putamen in Multiple Sclerosis: increased iron content? AJNR 8: 413–419

    Google Scholar 

  • Dwork AJ, Schon EA, Herbert J (1988) Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience 27: 333–345

    Article  PubMed  CAS  Google Scholar 

  • Ehmann WD, Markesbery WR, Alauddin M, Hossain T, Brubaker EH (1986)

    Google Scholar 

  • Brain trace elements in Alzheimer’s disease. Neurotoxicology 7: 197

    Google Scholar 

  • Elovaara I, Icen A, Palo J, Erkinjuntti T (1985) CSF in Alzheimer’ disease. J Neurol Sci 70: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Taylor CR, Mason DY (1976) Applications of an immunoperoxidase method to a study of the central nervous system: preliminary findings in a study of human formalin-fixed material. Neuropathol Appl Neurobiol 2: 233–246

    Article  Google Scholar 

  • Espinosa A, Focaud B (1987) Effect of iron and transferrin on pure oligodendrocytes in culture; characterization of a high affinity transferrin receptor at different ages. Dev Brain Res 35: 123–130

    Article  Google Scholar 

  • Espinosa de los Monteros A, Kumar S, Scully S, Cole R, deVellis J (1990) Transferrin gene expression and secretion by rat brain cells in vitro. J Neurosci Res 18: 299–304

    Google Scholar 

  • Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor mediated upkake of transferrin across the blood brain barrier. J Neurosci Res 18: 299–304

    Article  PubMed  CAS  Google Scholar 

  • Fleming J, Joshi JG (1987) Ferritin: isolation of aluminum-ferritin complex from brain. Proc Natl Acad Sci USA 84: 7866

    Article  PubMed  CAS  Google Scholar 

  • Francois C, Nguyen-legors J, Pencheron G (1981) Topographical and cytological localization of iron inrat and monkey brains. Brain Res 215: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Backman C, Bergman H, Hoffer B, Bloom F, Granholm A—C (1993) Blood-brain-barrier penetration and in vivo activity of an NGF conjugate. Science 259: 373–377

    Article  PubMed  CAS  Google Scholar 

  • Gelman BB, Rodrigua-Wolf, MS Wen J, et al (1992) Siderotic cerebral macrophages in the acquired immunodeficieny syndrome. Arch Pathol Lab Med 116: 509

    PubMed  CAS  Google Scholar 

  • Giometto B, Bozza F, Argentiero V, Gallo P, Pagni S, Piccinno MG, Tavolato B (1990) Transferrin receptor in rat central nervous system. An immunohistochemical study. J Neurol Sci 98: 81

    Google Scholar 

  • Gocht A, Lohler J (1990) Changes in glial cell markers in recent and old demyelinated lesions in central puntine myelinolysis. Acta Neuropathol 80: 46–58

    Article  PubMed  CAS  Google Scholar 

  • Good PF, Olanow CW, Perl DP (1992) Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 593: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Goodman L (1953) Alzheimer’s disease: a clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. J Nery Ment Dis 118: 97

    Article  CAS  Google Scholar 

  • Graeber MB, Raivich G, Kreutzberg GW (1989) Increase in transferrin receptors and iron uptake in regenerating motor neurons. J Neurosci Res 23: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Ruff MR, Weber RJ, Pert CB (1985) Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution. Proc Natl Acad Sci USA 82: 4553–4557

    Article  PubMed  CAS  Google Scholar 

  • Huggenvik JI, Craven CM, Idzerda RL, Bernstein S, Kaplan J, McKhight GS (1989) A splicing defect in the mouse transferrin gene leads to congenital atransferrinemia. Blood 74: 482

    PubMed  CAS  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312: 162

    Article  PubMed  CAS  Google Scholar 

  • Kalaria RN, Sromek SM, Grahovac I, Harik SI (1992) Transferrin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer’s disease. Brain Res 585: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Kitamoto T, Tateishi J, Yamaguchi K (1989) Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol (Berl) 79: 129

    Article  CAS  Google Scholar 

  • Koeppen AH, Dentinger MP (1988) Brain hemosiderin and superficial siderosis of the central nervous system. J Neuropathol Exp Neurol 47: 249

    Article  PubMed  CAS  Google Scholar 

  • Larkin EC, Rao A (1990) Importance of fetal and neonatal iron: adequacy for normal development of central nervous system. In: Dobking J (ed) Brain, behaviour, and iron in the infant diet, chapter 3. Springer, New York

    Google Scholar 

  • Levine M, Tuil D, Uzan G, et al (1984) Expression of the transferrin gene during development of non-hepatic tissue. Biochem Biophys Res Comm 122: 212–217

    Article  Google Scholar 

  • Levine SM, Macklin WB (1990) Iron-enriched oligodendrocytes: a reexamination of their spatial distribution. J Neurosci Res 26: 508

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Connor JR (1989) The development of the transferrin-transferrin receptor system in relation to astrocytes, MBP, and galactosecerebroside in normal and myelin-deficient rat optic nerves. Dev Brain Res 49: 281–293

    Google Scholar 

  • Mash DC, Pablo J, Flynn DD, Efange SMN, Weiner WJ (1990) Characterization and distribution of transferrin receptors in the rat brain. J Neurochem 55: 1972

    Article  PubMed  CAS  Google Scholar 

  • Morris CM, Candy JM, Oakley AE, Taylor GA, Mountfort S, Bishop H, Ward MK, Bloxham CA, Edwardson JA (1989) Comparison of the regional distribution of transferrin receptors and aluminum in the forebrain of chronic renal dialysis patients. J Neurol Sci 94: 295

    Article  PubMed  CAS  Google Scholar 

  • Morris CM, Candy JM, Bloxham CA, Edwardson JA (1992) Distribution of transferrin receptors in relation to cytochrome oxidase activity in the human spinal cord, lower brainstem and cerebellum. J Neurol Sci 111: 158–172

    Article  PubMed  CAS  Google Scholar 

  • Morris CM, Candy JM, Oakley AE, Bloxham CA, Edwardson JA (1992) Histochemical distribution of non-haem iron in the human brain. Acta Anat 144: 235–257

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Legros J, Bizot J, Bolesse M, Publicani JP (1980) Noir de diamurobenzidine: une nouvelle methode histochimique de revelation du fer exogene. Histochemistry 66: 239

    Article  PubMed  CAS  Google Scholar 

  • Nordmann R, Ribiere C, Rouach H (1990) Ethanol induced lipid peroxidation and oxidative stress in extrahepatic tissues. Alcohol 25: 231–237

    CAS  Google Scholar 

  • Octave JN, Schneider YJ, Trouet A, Crichton RR (1983) Iron uptake and utilization by mammalian cells. 1. Cellular uptake of transferrin and iron. Trends Biochem Sci 8: 217

    Google Scholar 

  • Oh TH, Markelonis GJ, Royal GM, Bregman BS (1986) Immunocytochemical distribution of transferrin and its receptor in the developing chicken nervous system. Dev Brain Res 30: 207

    Article  CAS  Google Scholar 

  • Partridge WM, Eisenberg J, Yang J (1987) Human blood brain barrier transfer-rin receptor. Metabolism 36: 892

    Article  Google Scholar 

  • Perry R (1986) Recent advances in neuropathology. Br Med Bull 42: 34

    PubMed  CAS  Google Scholar 

  • Rajan KS, Colburn RW, Davis JM (1976) Distribution of metal ions in the subcellular fractions of several rat brain areas. Life Sci 18: 423

    Article  PubMed  CAS  Google Scholar 

  • Reinke LA, Rau JM, McCay PB (1990) Possible roles of free radicals in alcoholic tissue damage. Free Rad Res Comm 9: 205–211

    Article  CAS  Google Scholar 

  • Roskams AJ, Connor JR (1990) Aluminum access to the brain: a possible role for the transferrin receptor. Proc Natl Acad Sci USA 87: 9024

    Article  PubMed  CAS  Google Scholar 

  • Roskams AJ, Connor JR (1992) The transferrin receptor in the myelin deficient (md) rat. J Neurosci Res 31: 421–427

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron ( III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199

    Google Scholar 

  • Taylor EM, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Dev Brain Res 55: 35

    Article  CAS  Google Scholar 

  • Thompson CM, Marksberry WR, Ehmann WD, Mao Y-X, Vance DE (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9: 1

    PubMed  CAS  Google Scholar 

  • Tsutsumi M, Sanders-Bush E (1990) 5-HT induced transferrin production by choroid plexus epithelial cells in culture: role of 5-HT receptor. J Pharmacol Exp Ther 254: 253–257

    Google Scholar 

  • Yehuda S, Youdim MBH (1988) Brain iron deficiency: biochemistry and behavior. In: Yehude S, Youdim MBH (eds) Brain iron: neurochemical and behavioural aspects. Taylor and Francis, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Connor, J.R. (1993). Cellular and regional maintenance of iron homeostasis in the brain: normal and diseased states. In: Riederer, P., Youdim, M.B.H. (eds) Iron in Central Nervous System Disorders. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9322-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9322-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82520-4

  • Online ISBN: 978-3-7091-9322-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics