The STORM Technology CAD System

  • J. Lorenz
  • C. Hill
  • H. Jaouen
  • C. Lombardi
  • C. Lyden
  • K. De Meyer
  • J. Pelka
  • A. Poncet
  • M. Rudan
  • S. Solmi


In this paper an outline of the STORM TCAD system is given. STORM is a program system for the two-dimensional simulation of semiconductor fabrication process sequences and the optimization of the electrical behavior of the devices fabricated. It has been developed within an ESPRIT project by a consortium of European companies and research institutes. In this presentation, the software structure of STORM is described, followed by a discussion of the physical models developed. Finally, some application examples are given. A more detailed description of the industrial evaluation of STORM is given in a dedicated paper elsewhere [1].


Lateral Spread Dopant Profile Sticking Coefficient Process Field Dopant Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.K. Jones et al., STORM: A European Platform for Sub-Micron Technology Simulation and Optimization, in: Proc. ESSDERC ‘83, 1993Google Scholar
  2. [2]
    H. Ryssel, K. Haberger, K. Hoffmann, G. Prinke, R. Dümcke, A. Sachs, Simulation of Doping Processes, IEEE Trans. Electron Devices ED-27 (8), 1484 (1980)CrossRefGoogle Scholar
  3. [3]
    D. Chin, M.R. Kump, H.G. Lee, R.W. Dutton, Process design using two-dimensional process and device simulators, IEEE Trans. Electron Devices ED-29 (2), 336 (1982)CrossRefGoogle Scholar
  4. [4]
    C. Corbex, A. Gerodolle, S. Martin, A. Poncet, Data Structuring for Process and Device Simulations, IEEE Trans. Computer-Aided Design CAD-7 (4), 489 (1988)CrossRefGoogle Scholar
  5. [5]
    C. Lombardi, M. Vanzi, E. Torri, IDAS: An interactive device analysis environment, in: Proc. NASECODE IV (ed. J.J.H. Miller ), p. 384, Boole Press, Dublin (1985)Google Scholar
  6. [6]
    A. Gerodolle, C. Corbex, A. Poncet, T. Pedron, S. Martin, TITAN 5, a two-dimensional process and device simulator, in: Software Tools for Process, Device, and Circuit Modeling (Lecture Notes of the Short Course and Digest of the Software Forum held in association with the NASECODE VI conference) (ed. W. Crans ), p. 56, Boole Presss, Dublin (1989)Google Scholar
  7. [7]
    J. Lorenz,J. Pelka, H. Ryssel, P. Pichler, Programs for VLSI Process Simulation, in: Software Tools for Process, Device, and Circuit Modeling (Lecture Notes of the Short Course and Digest of the Software Forum held in association with the NASECODE VI conference) (ed. W. Crans ), p. 179, Boole Presss, Dublin (1989)Google Scholar
  8. [8]
    STORM User’s Guide, Version 3.3, Marcn 1993Google Scholar
  9. [9]
    G. Baccarani, R. Guerrieri, P. Ciampolini, M. Rudan, HFIELDS: a highly flexible 2-D semiconductor-device analysis program, in: Proc. NASECODE IV (ed. J.J.H. Miller ), p. 3, Boole Press, Dublin (1985)Google Scholar
  10. [10]
    R. Cartuyvels, R. Booth, L. Dupas, K. De Meyer, Process Technology Optimization Using An Integrated Process and Device Simulation Sequencing System, in: Proc. ESSDERC ‘82 (eds. H.E. Maes, R.P. Mertens, R.J. Van Overstraeten ), p. 503, Elsevier, Amsterdam (1992)Google Scholar
  11. [11]
    W. Henke, D. Mewes, M. Weiss, G. Czech, R. Schiessl-Hoyler, Simulation of Defects in 4-Dimensional Resist Profiles in Optical Lithography, Microelectronic Engineering 13, 497 (1991)CrossRefGoogle Scholar
  12. [12]
    H. Wille, E.Burte, H.Ryssel, Simulation of the step coverage for chemical vapor deposited silicon dioxide, J. Appl. Phys. 71, 3532 (1992)CrossRefGoogle Scholar
  13. [13]
    M.M. IslamRaja, M.A. Cappelli, J.P. McVittie, K.C. Saraswat, J. Appl. Phys. 70 (11), 1991Google Scholar
  14. [14]
    H. Wille, E.P. Burte, A Dual Sticking Coefficient Chemical Vapor Deposition Model, in: Proc. ESSDERC ‘82 (ed. H.E. Maes, R.P. Mertens, R.J. Van Overstraeten ), p. 503, Elsevier, Amsterdam (1992)Google Scholar
  15. [15]
    H.Watanabe et al.; IEDM Technical Digest, p.821 (1990)Google Scholar
  16. [16]
    W. Henke, G, Czech, Simulation of Lithographic Images and Resist Profiles, Microelectric Engineering 11, 629 (1990)CrossRefGoogle Scholar
  17. [17]
    R. Pforr, R. Jonckheere, W. Henke, K. Ronse, P. Laenen, K.-H. Baik, L. Van den Hove, New Resolution Enhancing Mask for Projection Lithography Based on In-situ Off-axis Illumination,Presented at the SPIE Conf. on Microlithography, San Jose, CA (1993)Google Scholar
  18. [18]
    W. Pilz, J. Pelka, P. Banks, Profile Evolution in the Multi-Level Technique, Microelectronic Engineering 11, 521 (1990)CrossRefGoogle Scholar
  19. [19]
    J. Pelka, Simulation of ion-enhanced dry-etch processes, SPIE Vol. 1392, 55 (1990)CrossRefGoogle Scholar
  20. [20]
    K. Boernig, Modeling a collisional, capacitive sheath for surface modification applications in radio frequency discharges,submitted for publicatation in J. Appl. Phys.Google Scholar
  21. [21]
    C. Sung, Simulation and Modeling of Evaporated Deposition Profiles, SAMPLE Report No. SAMD-4, Memorandum No. UCB/ERL M81/8, University of California, Berkeley, (1981)Google Scholar
  22. [22]
    H. Ryssel, L. Gong, J. Lorenz, Improvements in Simulation of W Implantation Profiles, in: Proc. 1989 International Symphosium on VLSI Technology, Systems and Applications, p. 102, Taipeh, Taiwan, May 17–19, 1989Google Scholar
  23. [23]
    A.F. Tasch, H. Shin, C. Park, An Improved Approach to Accurately Model Shallow B and BF 2 Implants in Silicon, J. Electrochem. Soc. 136 (3), 810 (1989)CrossRefGoogle Scholar
  24. [24]
    H. Ryssel, J. Lorenz, K. Hoffmann, Models for the Implantation into Multilayer Targets, Appl. Phys. A41, 201 (1986)Google Scholar
  25. [25]
    R.J. Wierzbicki, J.P. Biersack, A. Barthel, J. Lorenz, H. Ryssel, Reflection Approach for the Analytical Description of Light Ion Implanted into Bilayer Structures, in: Proc. COSIRES 1992 (ed.J.P. Biersack ), Berlin (1992)Google Scholar
  26. [26]
    J. Lorenz, W. Krüger, A. Barthel, Simulation of the Lateral Spread of Implanted Ions: Theory, in: Proc. NASECODE VI (ed. J.J.H. Miller ), p. 513, Boole Press, Dublin (1989)Google Scholar
  27. [27]
    J. Lorenz, R.J. Wierzbicki, Efficient Multidimensional Simulation of Ion Implantation into Multilayer Structures, in: Proc. of the 1993 International Workshop on VLSI Process and Device Modeling (VPAD 1993), p. 84, Nara, Japan, May 14/15, 1993Google Scholar
  28. [28]
    R.J. Wierzbicki, J. Lorenz, H. Ryssel, Advanced Analytical Models for the Multidimensional Simulation of Ion Implantation, to be publishedGoogle Scholar
  29. [29]
    P.M. Fahey, P.B. Griffin, J.D. Plummer, Rev. Mod. Phys. 61 (2), 289–384 (1989)CrossRefGoogle Scholar
  30. [30]
    D. Mathiot, J.C. Pfister, J. Appl. Phys. 55, 3518 (1984)CrossRefGoogle Scholar
  31. [31]
    D. Mathiot, S. Martin, J. Appl. Phys. 70, 3071 (1991)CrossRefGoogle Scholar
  32. [32]
    C. Hill, S. Jones, D. Boys, in: Reduced Thermal Processing for VLSI (ed. R.A. Levy ), pp. 143–180, Plenum Press, New York (1989)CrossRefGoogle Scholar
  33. [33]
    A.G. O’Neill, C. Hill, J. King, C. Please, A new model for the diffusion of arsenic in polycrystalline silicon, J. Appl. Phys. 64 (1), 167 (1988)CrossRefGoogle Scholar
  34. [34]
    C. Hill, S.K. Jones, Modelling Dopant Diffusion in and from Polysilicon, Mat. Res. Proc. 182, 129 (1990)CrossRefGoogle Scholar
  35. [35]
    A. Gerodolle, S.K. Jones, Integration in the 2D Multi- Layer Simulator TITAN of a Advanced Model for Dopant Diffusion in Polysilicon, in: Simulation of Semiconductor Devives and Processes Vol. 4 (eds. W. Fichtner, D. Aemmer ), p. 381, Hartung-Gorre Verlag, Konstanz (1991)Google Scholar
  36. [36]
    L. Mei, R.W. Dutton, A Process Simulation Model for Multilayer Structures Involving Polycrystalline Silicon, IEEE Trans. Electron Devices ED-29 (11), 1726 (1982)Google Scholar
  37. [37]
    B.E. Deal, A.S. Grove, J. Appl. Phys. 36 (12), (1965)Google Scholar
  38. [38]
    A. Poncet, IEEE Trans. Computer-Aided Design CAD-4 (1), (1988)Google Scholar
  39. [39]
    P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications Vol. 4, North Holland (1978)Google Scholar
  40. [40]
    P. Suturdja et al., IEEE Trans. Electron Devices ED-36 (11), (1989)Google Scholar
  41. [41]
    D.J. Chin, PdD Thesis, Stanford University, (1983)Google Scholar
  42. [42]
    S.K. Jones, A. Gerodolle, C. Lombardi, M. Schäfer, C. Hill, Complete Bipolar Simulation Using STORM,in: Proc. IEDM ‘82 Google Scholar
  43. [43]
    G.J.L. Ouwerling, F. van Rijs, B.F.P. Jansen, W. Crans, Inverse Modeling with the PROFILE optimization driver, in: Software Tools for Process, Device, and Circuit Modeling (Lecture Notes of the Short Course and Digest of the Software Forum held in association with the NASECODE VI conference) (ed. W. Crans ), p. 78, Boole Press, Dublin (1989)Google Scholar
  44. [44]
    M. Rudan, M.C. Vecchi, A. Gnudi, Integrated Tools for Device Optimization, IEICE Trans. Electron E75-C (2), 216 (1992)Google Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • J. Lorenz
    • 1
  • C. Hill
    • 1
    • 2
  • H. Jaouen
    • 1
    • 3
  • C. Lombardi
    • 1
    • 4
  • C. Lyden
    • 1
    • 5
  • K. De Meyer
    • 1
    • 6
  • J. Pelka
    • 1
    • 7
  • A. Poncet
    • 1
    • 8
  • M. Rudan
    • 1
    • 9
  • S. Solmi
    • 1
    • 10
  1. 1.BauelementetechnologieFraunhofer-Institut für Integrierte SchaltungenErlangenGermany
  2. 2.GEC Marconi Material TechnologyCaswellUK
  3. 3.SGS ThomsonGrenobleFrance
  4. 4.SGS ThomsonAgrate BrianzaItaly
  5. 5.NMRCCorkIreland
  6. 6.IMECLeuvenBelgium
  7. 7.FhG-ISiTBerlinGermany
  8. 8.CNETMeylanFrance
  9. 9.DEISUniversity of BolognaBolognaItaly
  10. 10.CNR-LAMELBolognaItaly

Personalised recommendations