Advertisement

Technology CAD at AT&T

  • P. Lloyd
  • C. C. McAndrew
  • M. J. McLennan
  • S. Nassif
  • K. Singhal
  • Ku. Singhal
  • P. M. Zeitzoff
  • M. N. Darwish
  • K. Haruta
  • J. L. Lentz
  • H. Vuong
  • M. R. Pinto
  • C. S. Rafferty
  • I. C. Kizilyalli

Abstract

Technology computer-aided design (TCAD) is essential to the design of modern integrated circuit fabrication processes. TCAD tools must not only model real processes accurately, to allow predictive simulation during technology research and development, but must work together as an integrated system to allow efficient exploration of technology options. Sensitivity and statistical analyses using an integrated TCAD system provide rapid technology characterization, including the examination of process extremes, before fabrication. This predictive capability reduces the technology design interval, and enables the design of optimized, manufacturable designs. This paper describes the integrated TCAD system in use at AT&T.

Keywords

Bipolar Transistor Circuit Simulation Bell Laboratory Compact Model Extension Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Lloyd, H. K. Dirks, E. J. Prendergast, and K. Singhal, “Technology CAD for Competitive Products,” IEEE Trans. Computer-Aided Design, vol. 9, no. 11, pp. 1209–1216, Nov. 1990.CrossRefGoogle Scholar
  2. [2]
    A. V. Aho, B. W. Kernighan, and P. J. Weinberger, The AWK Programming Language, Reading, MA: Addison-Wesley, 1988.MATHGoogle Scholar
  3. [3]
    C. S. Rafferty, M. D. Giles, H.-H. Vuong, S. A. Eshraghi, M. R. Pinto and S. J. Hillenius, “Anomalous short-channel body coefficients due to transient enhanced diffusion,” Proc. VLSI Process/Device Modeling Workshop (VPAD), May 1993.Google Scholar
  4. [4]
    M. R. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, “Three-dimensional characterization of bipolar transistors in a submicron BiCMOS technology using integrated process and device simulation,” IEDM Technical Digest, pp. 923–926, Dec. 1992.Google Scholar
  5. [5]
    A. M. Lin, D. A. Antoniadis, and R. W. Dutton, “The Oxidation Rate Dependence of Oxidation-Enhanced Diffusion of Boron and Phosphorus in Silicon,” J. Electrochem. Soc., vol. 128, p. 1131, 1981.CrossRefGoogle Scholar
  6. [6]
    D. W. Hess and B. E. Deal, J. Electrochem. Soc., vol. 124, no. 5, p. 735, 1977.CrossRefGoogle Scholar
  7. [7]
    Penumalli, B.R., “A Comprehensive Two-Dimensional VLSI Process Simulation Program, BICEPS,” IEEE Trans. Electron Devices, vol. ED-30, no. 9, pp. 986–992, Sep. 1983.Google Scholar
  8. [8]
    M. R. Pinto, “Simulation of ULSI Device Effects,” in 1991 ULSI Science and Technology, J. Andrews and G. Cellar eds., Electrochem. Soc. Proc., vol. 91–11, pp. 43–51, 1991.Google Scholar
  9. [9]
    W. M. Coughran Jr., M. R. Pinto, R. K. Smith, “Adaptive Grid Generation for VLSI Device Simulation,” IEEE Trans. Computer-Aided Design, vol. 10, no. 10, p. 1259, Oct. 1991.CrossRefGoogle Scholar
  10. [10]
    W. L. Engl, R. Laur, and H. K. Dirks, “MEDUSA—A Simulator for Modular Circuits,” IEEE Trans. Computer-Aided Design, vol. 1, no. 2, pp. 85–93, Apr. 1982.CrossRefGoogle Scholar
  11. [11]
    F. Venturi, R. K. Smith, E. Sangiorgi, M. R. Pinto, and B. Riccb, “A General Purpose Device Simulator Coupling Poisson and Monte Carlo Transport with Applications to Deep Submicron MOSFETs,” IEEE Trans. Computer-Aided Design, vol. 8, no. 4, pp. 360–369, Apr. 1989.CrossRefGoogle Scholar
  12. [12]
    J. D. Bude and R. K. Smith, “Phase Space Simplex Monte Carlo for Semiconductor Transport,” Proc. Eighth Intl. Conf. on Hot Carriers in Semiconductors, Oxford, 1993.Google Scholar
  13. [13]
    J. D. Bude and I. C. Kizilyalli, “New Mechanism for Bipolar Degradation in Submicron BiCMOS,” Proc. Symp. on VLSI Technology, 1993.Google Scholar
  14. [14]
    B. R. Chawla and H. K. Gummel, “A Boundary Technique for Calculation of Distributed Resistances,” IEEE Trans. Electron Devices, vol. ED-17, no. 10, Oct. 1970.Google Scholar
  15. [15]
    T. A. Lenahan, “Calculation of Transmission–Line Parameters for 2D IC Interconnects,” AT&T Technical Memorandum 52174–120988–01, 1988.Google Scholar
  16. [16]
    L. W. Nagel, “ADVICE for Circuit Simulation,” Proc. ISCAS, Apr. 1980.Google Scholar
  17. [17]
    H. K. Gummel and H. C. Poon, “An Integral Charge-Control Model for Bipolar Transistors,” Bell Syst. Tech. J., vol. 49, no. 5, pp. 827–852, May 1970.Google Scholar
  18. [18]
    G. M. Kull, L. W. Nagel, S.-W. Lee, P. Lloyd, E. J. Prendergast, and H. Dirks, “A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects,” IEEE Trans. Electron Dev., vol. 32, no. 6, pp. 1103–1113, Jun. 1985.CrossRefGoogle Scholar
  19. [19]
    C. C. McAndrew, “A Complete and Consistent Electrical/Thermal HBT Model,” Proc. IEEE BCTM, pp. 200–203, Oct. 1992.Google Scholar
  20. [20]
    S. Liu and L. W. Nagel, “Small-Signal MOSFET Models for Analog Circuit Design,” IEEE J. Solid-State Circuits, vol. SC-17, no. 6, pp. 983–998, Dec. 1982.CrossRefGoogle Scholar
  21. [21]
    S.-W. Lee and R. C. Rennick, “A Compact IGFET MODEL-ASIM,” IEEE Trans. Computer-Aided Design, vol. 7, no. 9, pp. 952–975, Sep. 1988.CrossRefGoogle Scholar
  22. [22]
    Y. Tsividis and K. Suyama, “MOSFET Modeling for Analog Circuit CAD: Problems and Prospects,” Proc. CICC, pp. 14.1.1–14.1.6, May 1993.Google Scholar
  23. [23]
    C. C. McAndrew, B. K. Bhattacharyya, and O. Wing, “A Single Piece, C Continuous MOSFET Model Including Subthreshold Conduction,” IEEE Electron Device Lett., vol. 12, no. 10, pp. 565–567, Oct. 1991.CrossRefGoogle Scholar
  24. [24]
    K. Singhal, C. C. McAndrew, S. R. Nassif, and V. Visvanathan, “The CENTER Design Optimization System,” AT&T Technical Journal, vol. 68, no. 3, pp. 77–92, May/June 1989.Google Scholar
  25. [25]
    H. K. Dirks, R. Erwe, J. L. Lentz, C. C. McAndrew, S. R. Nassif, E. J. Prendergast, and K. Singhal, “The Modeling and Optimization of GaAs HFET Structures,” Proc. NASECODE VI, Dublin, Ireland, pp. 28–39, July 1989.Google Scholar
  26. [26]
    P. Lloyd, “Application of Numerical Simulation in Modeling of IC Device Structures,” in Proc. NASECODE III, Galway, 1983.Google Scholar
  27. [27]
    E. J. Prendergast, “An Integrated Approach to Modeling,” in Proc. NASECODE IV D b in, 1985.Google Scholar
  28. [28]
    G. Booch, Object-Oriented Design with Applications, Benjamin-Cummings, 1991.Google Scholar
  29. [29]
    S. G. Duvall, “An Interchange Format for Process and Device Simulation,” IEEE Trans. Computer-Aided Design,vol. 7, no. 7, pp. 741–754, 1988.CrossRefGoogle Scholar
  30. [30]
    F. Fasching, C. Fischer, S. Selberherr, H. Stippel, W. Tuppa, and H. Read, “A PIF implementation for TCAD purposes,” Simulation of Semiconductor Devices and Processes (SISDEP), vol. 4, pp. 477–482, Sept. 1991.Google Scholar
  31. [31]
    A. Wong, W. Dietrich, and M. Karasick eds., “Semiconductor Wafer Representation Architecture, Version 1.0,” CFI TCAD Framework Group, CAD Framework Initiative, Inc., Document TCAD-91-G-1, June 1992.Google Scholar
  32. [32]
    D. Hare and K. DeVilbiss eds., “Inter-Tool Communication Architecture,” CFI Inter-Tool Communication TSC, CAD Framework Initiative, Inc., Document 55, June 1991.Google Scholar
  33. [33]
    W. R. Stevens, UNIX ® Network Programming, Englewood Cliffs, NJ: Prentice-Hall, pp. 153–169, 1990.Google Scholar
  34. [34]
    Op. cit., pp. 110–115.Google Scholar
  35. [35]
    G. Springer and D. P. Friedman, Scheme and the Art of Programming, Cambridge, MA: MIT Press, 1989.Google Scholar
  36. [36]
    J. K. Ousterhout, “TCL: An Embeddable Command Language,” Proc. 1990 Winter USENIX Conference, pp 133–146, 1990.Google Scholar
  37. [37]
    I. C. Kizilyalli, T. E. Ham, K. Singhal, J. W. Kearney, W. Lin, and M. J. Thoma, “Predictive Worst-Case Statistical Modeling of 0.81.tm BICMOS Bipolar Transistors: A Methodology Based on Process and Mixed Device/Circuit Level Simulators,” IEEE Trans. Electron Dev., vol. 40, no. 5, pp. 966–973, May 1993.CrossRefGoogle Scholar
  38. [38]
    R. A. Becker, J. M. Chambers, and A. R. Wilks, The New S Language, Pacific Grove, CA: Wadsworth, 1988.MATHGoogle Scholar

Copyright information

© Springer-Verlag/Wien 1993

Authors and Affiliations

  • P. Lloyd
    • 1
  • C. C. McAndrew
    • 1
  • M. J. McLennan
    • 1
  • S. Nassif
    • 1
  • K. Singhal
    • 1
  • Ku. Singhal
    • 1
  • P. M. Zeitzoff
    • 1
  • M. N. Darwish
    • 1
  • K. Haruta
    • 1
  • J. L. Lentz
    • 1
  • H. Vuong
    • 1
  • M. R. Pinto
    • 1
    • 2
  • C. S. Rafferty
    • 1
    • 2
  • I. C. Kizilyalli
    • 1
    • 3
  1. 1.AT&T Bell LaboratoriesAllentownUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA
  3. 3.AT&T Bell LaboratoriesAllentownUSA

Personalised recommendations