Skip to main content

Technology CAD at AT&T

  • Conference paper
Technology CAD Systems

Abstract

Technology computer-aided design (TCAD) is essential to the design of modern integrated circuit fabrication processes. TCAD tools must not only model real processes accurately, to allow predictive simulation during technology research and development, but must work together as an integrated system to allow efficient exploration of technology options. Sensitivity and statistical analyses using an integrated TCAD system provide rapid technology characterization, including the examination of process extremes, before fabrication. This predictive capability reduces the technology design interval, and enables the design of optimized, manufacturable designs. This paper describes the integrated TCAD system in use at AT&T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Lloyd, H. K. Dirks, E. J. Prendergast, and K. Singhal, “Technology CAD for Competitive Products,” IEEE Trans. Computer-Aided Design, vol. 9, no. 11, pp. 1209–1216, Nov. 1990.

    Article  Google Scholar 

  2. A. V. Aho, B. W. Kernighan, and P. J. Weinberger, The AWK Programming Language, Reading, MA: Addison-Wesley, 1988.

    MATH  Google Scholar 

  3. C. S. Rafferty, M. D. Giles, H.-H. Vuong, S. A. Eshraghi, M. R. Pinto and S. J. Hillenius, “Anomalous short-channel body coefficients due to transient enhanced diffusion,” Proc. VLSI Process/Device Modeling Workshop (VPAD), May 1993.

    Google Scholar 

  4. M. R. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, “Three-dimensional characterization of bipolar transistors in a submicron BiCMOS technology using integrated process and device simulation,” IEDM Technical Digest, pp. 923–926, Dec. 1992.

    Google Scholar 

  5. A. M. Lin, D. A. Antoniadis, and R. W. Dutton, “The Oxidation Rate Dependence of Oxidation-Enhanced Diffusion of Boron and Phosphorus in Silicon,” J. Electrochem. Soc., vol. 128, p. 1131, 1981.

    Article  Google Scholar 

  6. D. W. Hess and B. E. Deal, J. Electrochem. Soc., vol. 124, no. 5, p. 735, 1977.

    Article  Google Scholar 

  7. Penumalli, B.R., “A Comprehensive Two-Dimensional VLSI Process Simulation Program, BICEPS,” IEEE Trans. Electron Devices, vol. ED-30, no. 9, pp. 986–992, Sep. 1983.

    Google Scholar 

  8. M. R. Pinto, “Simulation of ULSI Device Effects,” in 1991 ULSI Science and Technology, J. Andrews and G. Cellar eds., Electrochem. Soc. Proc., vol. 91–11, pp. 43–51, 1991.

    Google Scholar 

  9. W. M. Coughran Jr., M. R. Pinto, R. K. Smith, “Adaptive Grid Generation for VLSI Device Simulation,” IEEE Trans. Computer-Aided Design, vol. 10, no. 10, p. 1259, Oct. 1991.

    Article  Google Scholar 

  10. W. L. Engl, R. Laur, and H. K. Dirks, “MEDUSA—A Simulator for Modular Circuits,” IEEE Trans. Computer-Aided Design, vol. 1, no. 2, pp. 85–93, Apr. 1982.

    Article  Google Scholar 

  11. F. Venturi, R. K. Smith, E. Sangiorgi, M. R. Pinto, and B. Riccb, “A General Purpose Device Simulator Coupling Poisson and Monte Carlo Transport with Applications to Deep Submicron MOSFETs,” IEEE Trans. Computer-Aided Design, vol. 8, no. 4, pp. 360–369, Apr. 1989.

    Article  Google Scholar 

  12. J. D. Bude and R. K. Smith, “Phase Space Simplex Monte Carlo for Semiconductor Transport,” Proc. Eighth Intl. Conf. on Hot Carriers in Semiconductors, Oxford, 1993.

    Google Scholar 

  13. J. D. Bude and I. C. Kizilyalli, “New Mechanism for Bipolar Degradation in Submicron BiCMOS,” Proc. Symp. on VLSI Technology, 1993.

    Google Scholar 

  14. B. R. Chawla and H. K. Gummel, “A Boundary Technique for Calculation of Distributed Resistances,” IEEE Trans. Electron Devices, vol. ED-17, no. 10, Oct. 1970.

    Google Scholar 

  15. T. A. Lenahan, “Calculation of Transmission–Line Parameters for 2D IC Interconnects,” AT&T Technical Memorandum 52174–120988–01, 1988.

    Google Scholar 

  16. L. W. Nagel, “ADVICE for Circuit Simulation,” Proc. ISCAS, Apr. 1980.

    Google Scholar 

  17. H. K. Gummel and H. C. Poon, “An Integral Charge-Control Model for Bipolar Transistors,” Bell Syst. Tech. J., vol. 49, no. 5, pp. 827–852, May 1970.

    Google Scholar 

  18. G. M. Kull, L. W. Nagel, S.-W. Lee, P. Lloyd, E. J. Prendergast, and H. Dirks, “A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects,” IEEE Trans. Electron Dev., vol. 32, no. 6, pp. 1103–1113, Jun. 1985.

    Article  Google Scholar 

  19. C. C. McAndrew, “A Complete and Consistent Electrical/Thermal HBT Model,” Proc. IEEE BCTM, pp. 200–203, Oct. 1992.

    Google Scholar 

  20. S. Liu and L. W. Nagel, “Small-Signal MOSFET Models for Analog Circuit Design,” IEEE J. Solid-State Circuits, vol. SC-17, no. 6, pp. 983–998, Dec. 1982.

    Article  Google Scholar 

  21. S.-W. Lee and R. C. Rennick, “A Compact IGFET MODEL-ASIM,” IEEE Trans. Computer-Aided Design, vol. 7, no. 9, pp. 952–975, Sep. 1988.

    Article  Google Scholar 

  22. Y. Tsividis and K. Suyama, “MOSFET Modeling for Analog Circuit CAD: Problems and Prospects,” Proc. CICC, pp. 14.1.1–14.1.6, May 1993.

    Google Scholar 

  23. C. C. McAndrew, B. K. Bhattacharyya, and O. Wing, “A Single Piece, C Continuous MOSFET Model Including Subthreshold Conduction,” IEEE Electron Device Lett., vol. 12, no. 10, pp. 565–567, Oct. 1991.

    Article  Google Scholar 

  24. K. Singhal, C. C. McAndrew, S. R. Nassif, and V. Visvanathan, “The CENTER Design Optimization System,” AT&T Technical Journal, vol. 68, no. 3, pp. 77–92, May/June 1989.

    Google Scholar 

  25. H. K. Dirks, R. Erwe, J. L. Lentz, C. C. McAndrew, S. R. Nassif, E. J. Prendergast, and K. Singhal, “The Modeling and Optimization of GaAs HFET Structures,” Proc. NASECODE VI, Dublin, Ireland, pp. 28–39, July 1989.

    Google Scholar 

  26. P. Lloyd, “Application of Numerical Simulation in Modeling of IC Device Structures,” in Proc. NASECODE III, Galway, 1983.

    Google Scholar 

  27. E. J. Prendergast, “An Integrated Approach to Modeling,” in Proc. NASECODE IV D b in, 1985.

    Google Scholar 

  28. G. Booch, Object-Oriented Design with Applications, Benjamin-Cummings, 1991.

    Google Scholar 

  29. S. G. Duvall, “An Interchange Format for Process and Device Simulation,” IEEE Trans. Computer-Aided Design,vol. 7, no. 7, pp. 741–754, 1988.

    Article  Google Scholar 

  30. F. Fasching, C. Fischer, S. Selberherr, H. Stippel, W. Tuppa, and H. Read, “A PIF implementation for TCAD purposes,” Simulation of Semiconductor Devices and Processes (SISDEP), vol. 4, pp. 477–482, Sept. 1991.

    Google Scholar 

  31. A. Wong, W. Dietrich, and M. Karasick eds., “Semiconductor Wafer Representation Architecture, Version 1.0,” CFI TCAD Framework Group, CAD Framework Initiative, Inc., Document TCAD-91-G-1, June 1992.

    Google Scholar 

  32. D. Hare and K. DeVilbiss eds., “Inter-Tool Communication Architecture,” CFI Inter-Tool Communication TSC, CAD Framework Initiative, Inc., Document 55, June 1991.

    Google Scholar 

  33. W. R. Stevens, UNIX ® Network Programming, Englewood Cliffs, NJ: Prentice-Hall, pp. 153–169, 1990.

    Google Scholar 

  34. Op. cit., pp. 110–115.

    Google Scholar 

  35. G. Springer and D. P. Friedman, Scheme and the Art of Programming, Cambridge, MA: MIT Press, 1989.

    Google Scholar 

  36. J. K. Ousterhout, “TCL: An Embeddable Command Language,” Proc. 1990 Winter USENIX Conference, pp 133–146, 1990.

    Google Scholar 

  37. I. C. Kizilyalli, T. E. Ham, K. Singhal, J. W. Kearney, W. Lin, and M. J. Thoma, “Predictive Worst-Case Statistical Modeling of 0.81.tm BICMOS Bipolar Transistors: A Methodology Based on Process and Mixed Device/Circuit Level Simulators,” IEEE Trans. Electron Dev., vol. 40, no. 5, pp. 966–973, May 1993.

    Article  Google Scholar 

  38. R. A. Becker, J. M. Chambers, and A. R. Wilks, The New S Language, Pacific Grove, CA: Wadsworth, 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag/Wien

About this paper

Cite this paper

Lloyd, P. et al. (1993). Technology CAD at AT&T. In: Fasching, F., Halama, S., Selberherr, S. (eds) Technology CAD Systems. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9315-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9315-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9317-4

  • Online ISBN: 978-3-7091-9315-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics