On the interaction of wave-like disturbances with shocks — two idealizations of the shock/turbulence interaction problem

  • R. Friedrich
  • R. Hannappel
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


Numerical simulations are presented of the interaction between a Mach-8-shock and vorticity ‘waves’ in one case and dilatation ‘waves’ in the other using the two-dimensional Euler equations. Due to compressibility effects high amplification rates of the fluctuations and strong shock deformation are observed in the second case. An explanation of some of these effects is given on the basis of rapid distortion arguments. They provide insight into more complicated cases of shock/turbulence interaction.


Direct Numerical Simulation Shock Front Pressure Fluctuation Compressible Turbulence Rapid Distortion Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kovaznay, L. S. G.: Turbulence in supersonic flow. J. Aero. Sci. 20, 657–682 (1953).Google Scholar
  2. [2]
    Morkovin, M. V.: Effects of compressibility on turbulent flows. Mécanique de la turbulence. Paris: CNRS, 1962.Google Scholar
  3. [3]
    Blaisdell, G. A., Mansour, N. N., Reynolds, W. C.: Numerical simulations of compressible homogeneous turbulence. Report No. TF-50, Dept. of Mech. Eng., Stanford Univ., CA 1991.Google Scholar
  4. [4]
    Sarkar, S., Erlebacher, G., Hussaini, M. Y., Kreiss, H. O.: The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473–493 (1991).CrossRefMATHADSGoogle Scholar
  5. [5]
    Hannappel, R., Friedrich, R.: Interaction of isotropic turbulence with a normal shock wave. In: Advances in Turbulence IV (Nieuwstadt, F. T. M., ed.). Appl. Sci. Res. 51, 507–512 (1993).Google Scholar
  6. [6]
    Lee, S., Moin, P, Lele, S. K.: Interaction of isotropic turbulence with a shock wave. Report No. TF-52, Dept. of Mech. Eng., Stanford Univ., CA 1992.Google Scholar
  7. [7]
    Zang, T. A., Hussaini, M. Y., Bushnell, D. M.: Numerical computations of turbulence amplification in shock-wave interaction. AIAA J. 22, 13–21 (1984).CrossRefMATHADSGoogle Scholar
  8. [8]
    McKenzie, J. F., Westphal, K. O.: Interaction of linear waves with oblique shock waves. Phys. Fluids 11, 2350–2362 (1968).CrossRefMATHADSGoogle Scholar
  9. [9]
    Harten, A., Enquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comp. Phys. 71, 231–303 (1987).CrossRefMATHADSGoogle Scholar
  10. [10]
    Roe, P. L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comp. Phys. 43, 357–372 (1981).CrossRefMATHADSMathSciNetGoogle Scholar
  11. [11]
    Harten, A., Hyman, M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comp. Phys. 49, 235–269 (1983).CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    Hauser, Th., Hannappel, R., Friedrich, R.: Testing high-order shock-capturing schemes in 2D super-and hypersonic flows. — In: Proceedings of the 1st European Symposium on Aerothermodynamics for Space Vehicles, ESTEC, Noordwijk, May 28–30, 1991, (Berry, W, et al., eds.), pp. 393–399. Noordwijk: ESA Publ. 1991.Google Scholar
  13. [13]
    Friedrich, R., Hannappel, R., Hauser, Th.: Stoß-Wellen-und Stoß-Turbulenz-Wechselwirkung. In: Turbulente Strömungen in Forschung und Praxis (Leder, A., ed.), pp. 131–144. Aachen: Shaker 1993.Google Scholar
  14. [14]
    Zeman, O., Coleman, G. N.: Compressible turbulence subjected to shear and rapid compression. In: Turbulent shear flows Vol. 8 ( Durst, W., et al., eds.). Berlin Heidelberg New York Tokyo: Springer 1993.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Friedrich
    • 1
  • R. Hannappel
    • 1
  1. 1.Technische Universität MünchenMünchenFederal Republic of Germany

Personalised recommendations