Turbulence and rarefied gasdynamics

  • C. Cercignani
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


The problem of the relation between turbulence and rarefied gasdynamics is considered, with particular attention to recent computer experiments on rarefied gases that seem to exhibit, in addition to the onset of physical instabilities, also features of transition to chaotic bulk motion.


Boltzmann Equation Rayleigh Number Knudsen Number Couette Flow Dissipative Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arkeryd, L., Cercignani, C., Illner, R.: Measure solutions of the steady Boltzmann equation in a slab. Commun. Math. Phys. 142, 285–296 (1991).CrossRefMATHADSMathSciNetGoogle Scholar
  2. [2]
    Stefanov, S., Cercignani, C.: Monte Carlo simulation of Bénard’s instability in a rarefied gas. Euro. J. Mech. B 5, 543–552 (1992).MathSciNetGoogle Scholar
  3. [3]
    Cercignani, C., Stefanov, S.: Bénard’s instability in kinetic theory. Transp. Theory Stat. Phys. 21, 371–381 (1992).MATHGoogle Scholar
  4. [4]
    Stefanov, S., Cercignani, C.: Monte Carlo simulation of a channel flow of a rarefied gas. Euro J. Mech. B (to appear).Google Scholar
  5. [5]
    Stefanov, S., Cercignani, C.: Monte Carlo Simulation of the Taylor-Couette flow of a rarefied gas. J. Fluid Mech. (to appear).Google Scholar
  6. [6]
    Bénard, H.: Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Ann. Chim. Phys. 23, 62–144 (1901).Google Scholar
  7. [7]
    Lord Rayleigh: On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 32, 529–546 (1916).Google Scholar
  8. [8]
    Joseph, D. D.: Stability of fluid motions I and II. Berlin Heidelberg New York: Springer 1976.Google Scholar
  9. [9]
    Cercignani, C.: The Boltzmann equation and its applications. Wien New York: Springer 1988.CrossRefMATHGoogle Scholar
  10. [10]
    Kogan, M. N.: Rarefied gasdynamics. New York: Plenum Press 1969.Google Scholar
  11. [11]
    Cercignani, C.: Mathematical methods in kinetic theory. New York: Plenum Press 1990.MATHGoogle Scholar
  12. [12]
    Chapman, S., Cowling, T. G.: The mathematical theory of non-uniform gases. London: Cambridge University Press 1952.Google Scholar
  13. [13]
    Bird, G.: Perception of numerical methods in rarefied gasdynamics In: Rarefied gasdynamics: theoretical and computational techniques (Muntz, E. P., Weaver, D. P., Campbell, D. H., eds.), pp. 212–226. Washington: AIAA 1989.Google Scholar
  14. [14]
    Yanitsky, V. E.: Operator approach to direct Monte Carlo simulation theory. In: Rarefied gas-dynamics (Beylich, A., ed.), pp. 770–777. New York: VCH Publishers 1991.Google Scholar
  15. [15]
    Landau, L. D., Lifshitz, E. M.: Fluid mechanics. New York: Addison Wesley 1959.Google Scholar
  16. [16]
    Bird, G.: Comment on “False collisions in the direct simulation Monte Carlo method” [Phys. Fluids 31, 2047 (1988)]. Phys. Fluids A 1, 897–897 (1989).CrossRefADSGoogle Scholar
  17. [17]
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, p. 323. London: Oxford University Press 1961.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. Cercignani
    • 1
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations