Skip to main content

Optimum regularity of Navier-Stokes solutions at time t = 0 and applications

  • Chapter
Book cover Fluid- and Gasdynamics

Part of the book series: Acta Mechanica ((ACTA MECH.SUPP.,volume 4))

  • 291 Accesses

Summary

Having in our mind the general rule from numerical mathematics: “more regular solutions allow approximations of a higher convergence rate also in stronger norms” first of all we point out the optimum regularity of a Navier-Stokes solution at its initial time. Then by means of our result we state H 2-convergence of a sequence of linearizations and of Rothe’s scheme to the Navier-Stokes initial-boundary value problem. By a numerical realization of this general approach, W. Borchers and our Paderborn group have calculated 3-dimensional viscous incompressible flows past a sphere (without symmetry assumptions) at Reynolds numbers 20000 [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. A.: Sobolev spaces. New York: Academic Press 1975.

    MATH  Google Scholar 

  2. Alessandrini, G., Douglis, A., Fabes, E.: An approximate layering method for the Navier-Stokes equations in bounded cylinders. Ann. Math. Pure Appl. 135, 329–347 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  3. Beale, J. T.: The approximation of the Navier-Stokes equations by fractional time steps. Conference on the Navier-Stokes equations, theory and numerical methods, Oberwolfach 18–24.8. 1991 (conference lecture).

    Google Scholar 

  4. Beale, J. T, Greengard, C.: Convergence of Euler-Stokes splitting of the Navier-Stokes equations. Research Report RC 18072 (79337) 6/11/92 Mathematics 30, IBM Research Division Almaden 1992.

    Google Scholar 

  5. Borchers, W.: A Fourier-spectral method for flows past obstacles. In: Finite approximations in fluid mechanics (Hirschel, E. H.,ed.), pp. 223–248. Notes on Numerical Fluid Mechanics, 1992/93.

    Google Scholar 

  6. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend Mat. Sem. Univ. Padova 31, 308–340 (1961).

    MATH  MathSciNet  Google Scholar 

  7. Chorin, A. J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  8. Chorin, A. J., Hughes, T. J. R., McCracken, M. E, Marsden, J. E.: Product formulas and numerical algorithms. Comm. Pure Appl. Math. 31, 205–256 (1978).

    MATH  MathSciNet  Google Scholar 

  9. Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal. 16, 269–315 (1964).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Fujita, H., Morimoto, H.: On fractional powers of the Stokes operator. Proc. Japan. Acad. 46, 1141–1143 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga, Y., Miyakawa, T: Solutions in L, of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal. 89, 267–281 (1985).

    MATH  MathSciNet  Google Scholar 

  12. Heywood, J. G.: The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980).

    MATH  MathSciNet  Google Scholar 

  13. Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I. Siam. J. Numer. Anal. 19, 275–311 (1982).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow, 2nd ed. New York: Gordon and Breach 1969.

    MATH  Google Scholar 

  15. Lighthill, M. J.: Introduction: boundary layer theory. In: Laminar boundary layers (Rosenhead, L., ed.), pp. 43–113. Oxford: University Press 1963.

    Google Scholar 

  16. Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1. Berlin Heidelberg New York: Springer 1972.

    Google Scholar 

  17. Masuda, K.: Remarks on compatibility conditions for solutions of Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, 155–164 (1987).

    Google Scholar 

  18. Masuda, K., Rautmann, R.: Convergence rates for product formula approximations to Navier-Stokes problems (to appear).

    Google Scholar 

  19. Prandtl, L.: Tragflügeltheorie. I. Mitteilung, Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse 451–477 (1918).

    Google Scholar 

  20. Rautmann, R.: On optimum regularity of Navier-Stokes solutions at time t = 0. Math. Z. 184, 141–149 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  21. Rautmann, R.: Eine konvergente Produktformel für linearisierte Navier-Stokes-Probleme. Z. Angew. Math. Mech. 69, 181–183 (1989).

    MathSciNet  Google Scholar 

  22. Rautmann, R.: H2-convergent linearizations to the Navier-Stokes initial value problem. In: Proc. Intern. Conf. on New Developments in Partial Differential Equations and Applications to Mathematical Physics (Buttazo, G., Galdi, G. P., Zanghirati, L., eds.), pp. 135–156. Ferrara 14–18 October 1991. New York: Plenum Press 1992.

    Chapter  Google Scholar 

  23. Rautmann, R.:H2-convergence of Rothe’s scheme to the Navier-Stokes equations. J. Nonlin. Anal. (to appear).

    Google Scholar 

  24. Solonnikov, V. A.: On differential properties of the solutions of the first boundary-value problem for nonstationary systems of Navier-Stokes equations. Trudy Mat. Inst. Steklov 73, 221–291 (1964) (Transi.: British Library Lending Div., RTS 5211 ).

    MATH  MathSciNet  Google Scholar 

  25. Tanabe, H.: Equations of evolution. London: Pitman 1979.

    MATH  Google Scholar 

  26. Temam, R.: Navier-Stokes equations. Amsterdam: North-Holland 1979.

    MATH  Google Scholar 

  27. Temam, R.: Behaviour at time t = 0 of the solutions of semi-linear evolution equations. MRC Technical Summary Report 2162, University of Wisconsin, Madison 1980.

    Google Scholar 

  28. Varnhorn, W: Time stepping procedures for the nonstationary Stokes equations. Preprint 1353 (1991).

    Google Scholar 

  29. Wahl, W. von: The equations of Navier-Stokes and abstract parabolic equations. Braunschweig: Vieweg 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Rautmann, R. (1994). Optimum regularity of Navier-Stokes solutions at time t = 0 and applications. In: Schnerr, G.H., Bohning, R., Frank, W., Bühler, K. (eds) Fluid- and Gasdynamics. Acta Mechanica, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9310-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9310-5_41

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82495-5

  • Online ISBN: 978-3-7091-9310-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics