Advertisement

Optimum regularity of Navier-Stokes solutions at time t = 0 and applications

  • R. Rautmann
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)

Summary

Having in our mind the general rule from numerical mathematics: “more regular solutions allow approximations of a higher convergence rate also in stronger norms” first of all we point out the optimum regularity of a Navier-Stokes solution at its initial time. Then by means of our result we state H 2-convergence of a sequence of linearizations and of Rothe’s scheme to the Navier-Stokes initial-boundary value problem. By a numerical realization of this general approach, W. Borchers and our Paderborn group have calculated 3-dimensional viscous incompressible flows past a sphere (without symmetry assumptions) at Reynolds numbers 20000 [5].

Keywords

Reynolds Number Stokes Operator Optimum Regularity Viscous Incompressible Flow Single Time Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, R. A.: Sobolev spaces. New York: Academic Press 1975.MATHGoogle Scholar
  2. [2]
    Alessandrini, G., Douglis, A., Fabes, E.: An approximate layering method for the Navier-Stokes equations in bounded cylinders. Ann. Math. Pure Appl. 135, 329–347 (1983).MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Beale, J. T.: The approximation of the Navier-Stokes equations by fractional time steps. Conference on the Navier-Stokes equations, theory and numerical methods, Oberwolfach 18–24.8. 1991 (conference lecture).Google Scholar
  4. [4]
    Beale, J. T, Greengard, C.: Convergence of Euler-Stokes splitting of the Navier-Stokes equations. Research Report RC 18072 (79337) 6/11/92 Mathematics 30, IBM Research Division Almaden 1992.Google Scholar
  5. [5]
    Borchers, W.: A Fourier-spectral method for flows past obstacles. In: Finite approximations in fluid mechanics (Hirschel, E. H.,ed.), pp. 223–248. Notes on Numerical Fluid Mechanics, 1992/93.Google Scholar
  6. [6]
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend Mat. Sem. Univ. Padova 31, 308–340 (1961).MATHMathSciNetGoogle Scholar
  7. [7]
    Chorin, A. J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973).ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Chorin, A. J., Hughes, T. J. R., McCracken, M. E, Marsden, J. E.: Product formulas and numerical algorithms. Comm. Pure Appl. Math. 31, 205–256 (1978).MATHMathSciNetGoogle Scholar
  9. [9]
    Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal. 16, 269–315 (1964).MATHADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    Fujita, H., Morimoto, H.: On fractional powers of the Stokes operator. Proc. Japan. Acad. 46, 1141–1143 (1970).MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Giga, Y., Miyakawa, T: Solutions in L, of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal. 89, 267–281 (1985).MATHMathSciNetGoogle Scholar
  12. [12]
    Heywood, J. G.: The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639–681 (1980).MATHMathSciNetGoogle Scholar
  13. [13]
    Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem I. Siam. J. Numer. Anal. 19, 275–311 (1982).MATHADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow, 2nd ed. New York: Gordon and Breach 1969.MATHGoogle Scholar
  15. [15]
    Lighthill, M. J.: Introduction: boundary layer theory. In: Laminar boundary layers (Rosenhead, L., ed.), pp. 43–113. Oxford: University Press 1963.Google Scholar
  16. [16]
    Lions, J. L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1. Berlin Heidelberg New York: Springer 1972.Google Scholar
  17. [17]
    Masuda, K.: Remarks on compatibility conditions for solutions of Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34, 155–164 (1987).Google Scholar
  18. [18]
    Masuda, K., Rautmann, R.: Convergence rates for product formula approximations to Navier-Stokes problems (to appear).Google Scholar
  19. [19]
    Prandtl, L.: Tragflügeltheorie. I. Mitteilung, Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse 451–477 (1918).Google Scholar
  20. [20]
    Rautmann, R.: On optimum regularity of Navier-Stokes solutions at time t = 0. Math. Z. 184, 141–149 (1983).MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Rautmann, R.: Eine konvergente Produktformel für linearisierte Navier-Stokes-Probleme. Z. Angew. Math. Mech. 69, 181–183 (1989).MathSciNetGoogle Scholar
  22. [22]
    Rautmann, R.: H2-convergent linearizations to the Navier-Stokes initial value problem. In: Proc. Intern. Conf. on New Developments in Partial Differential Equations and Applications to Mathematical Physics (Buttazo, G., Galdi, G. P., Zanghirati, L., eds.), pp. 135–156. Ferrara 14–18 October 1991. New York: Plenum Press 1992.CrossRefGoogle Scholar
  23. [23]
    Rautmann, R.:H2-convergence of Rothe’s scheme to the Navier-Stokes equations. J. Nonlin. Anal. (to appear).Google Scholar
  24. [24]
    Solonnikov, V. A.: On differential properties of the solutions of the first boundary-value problem for nonstationary systems of Navier-Stokes equations. Trudy Mat. Inst. Steklov 73, 221–291 (1964) (Transi.: British Library Lending Div., RTS 5211 ).MATHMathSciNetGoogle Scholar
  25. [25]
    Tanabe, H.: Equations of evolution. London: Pitman 1979.MATHGoogle Scholar
  26. [26]
    Temam, R.: Navier-Stokes equations. Amsterdam: North-Holland 1979.MATHGoogle Scholar
  27. [27]
    Temam, R.: Behaviour at time t = 0 of the solutions of semi-linear evolution equations. MRC Technical Summary Report 2162, University of Wisconsin, Madison 1980.Google Scholar
  28. [28]
    Varnhorn, W: Time stepping procedures for the nonstationary Stokes equations. Preprint 1353 (1991).Google Scholar
  29. [29]
    Wahl, W. von: The equations of Navier-Stokes and abstract parabolic equations. Braunschweig: Vieweg 1985.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. Rautmann
    • 1
  1. 1.Fachbereich Mathematik—InformatikUniversität GHS PaderbornPaderbornFederal Republic of Germany

Personalised recommendations