Interacting laminar boundary layers of dense gases

  • A. Kluwick
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)


The concept of triple deck theory is applied to study laminar interacting boundary layers of dense gases in external subsonic, supersonic and transonic flow. If the flow outside the boundary layer is either purely subsonic or purely supersonic the unusual thermodynamic properties of dense gases do not enter the description of interaction processes to leading order thus leaving the basic scaling laws of standard triple deck theory unchanged. This is no longer true in the transonic flow regime where the streamwise extent and, more important, the magnitude of the induced pressure disturbances are seen to depend on the size of the fundamental derivative Γ. The size of Γ also strongly influences the distance from the wall at which nonlinear cumulative effects lead to a significant distortion of outgoing pressure waves generated by supersonic interacting boundary layers.


Laminar Boundary Layer Transonic Flow Interact Boundary Layer Supersonic Boundary Layer Lower Deck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Duhem, P.: Sur la propagation des ondes de choc au sein des fluides. Z. Phys. Chem. 69, 169–186 (1909).Google Scholar
  2. [2]
    Hayes, W. D.: Gasdynamic discontinuities. Princeton Series on High Speed Aerodynamics and Jet Propulsion. Princeton: Princeton University Press (1960).Google Scholar
  3. [3]
    Thompson, P. A.: A fundamental derivative in gasdynamics. Phys. Fluids 14, 1843–1849 (1971).CrossRefMATHADSGoogle Scholar
  4. [4]
    Cramer, M. S.: Nonclassical dynamics of classical gases. In: Nonlinear waves in real fluids (Kluwick, A. ed.), pp. 91–145. Wien, New York: Springer 1991.Google Scholar
  5. [5]
    Bethe, H. A.: The theory of shock waves for an arbitrary equation of state. Technical report, Office Sci. Res. Dev. Rep. 545 (1942).Google Scholar
  6. [6]
    Zel’dovich, Ya. B.: On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363–364 (1946).Google Scholar
  7. [7]
    Cramer, M. S., Kluwick, A.: On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 9–37 (1984).CrossRefMATHADSMathSciNetGoogle Scholar
  8. [8]
    Cramer, M. S., Kluwick, A., Watson, L. T., Pelz, W.: Dissipative waves in fluids having both positive and negative nonlinearity. J. Fluid Mech. 169, 329–336 (1986).CrossRefADSGoogle Scholar
  9. [9]
    Kluwick, A., Czemetschka, E.: Kugel- und Zylinderwellen in Medien mit positiver und negativer Nichtlinearität. ZAMM 70, 207–208 (1990).Google Scholar
  10. [10]
    Cramer, M. S., Sen, R.: Exact solutions for sonic shocks in van der Waals gases. Phys. Fluids 30, 377–385 (1987).CrossRefMATHADSGoogle Scholar
  11. [11]
    Cramer, M. S., Crickenberger, A. B.: The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325–355 (1991).CrossRefMATHADSGoogle Scholar
  12. [12]
    Kluwick, A.: Small-amplitude finite-rate waves in fluids having both positive and negative nonlinearity. In: Nonlinear waves in real-fluids (Kluwick, A. ed.), pp. 1–43. Wien, New York: Springer 1991.Google Scholar
  13. [13]
    Cramer, M. S., Best, L. M.: Steady isentropic flow of dense gases. Phys. Fluids A 3, 219–226 (1991).CrossRefMATHADSGoogle Scholar
  14. [14]
    Chandrasekar, D., Prasad, Ph.: Transonic flow of a fluid with positive and negative nonlinearity through a nozzle. Phys. Fluids A 3, 427–438 (1991).CrossRefMATHADSMathSciNetGoogle Scholar
  15. [15]
    Cramer, M. S., Crickenberger, A. B.: Prandtl-Meyer function for dense gases. AIAA J. 30, 561–564 (1992).CrossRefMATHADSGoogle Scholar
  16. [16]
    Cramer, M. S., Tarkenton, G. M.: Transonic flows of Bethe-Zel’dovich-Thompson fluids. J. Fluid Mech. 240, 197–228 (1992).CrossRefMATHADSMathSciNetGoogle Scholar
  17. [17]
    Kluwick, A.: Transonic nozzle flow of dense gases. J. Fluid Mech 247, 661–688 (1993).CrossRefMATHADSGoogle Scholar
  18. [18]
    Whitlock, S. T: Compressible flows of dense gases in boundary layers. Master’s thesis, Department for Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, 1992.Google Scholar
  19. [19]
    Zieher, F.: Laminare Grenzschichten in schweren Gasen. Master’s thesis, Institute for Fluid Dynamics and Heat Transfer, Technical University, Vienna 1993.Google Scholar
  20. [20]
    Reid, R. C., Prausnitz, J. M., Poling, B. E.: The properties of gases and liquids, 4th edn. New York: Wiley 1987.Google Scholar
  21. [21]
    Stewartson, K.: On the flow near the trailing edge of a flat plate II. Mathematika 16, 106–121 (1969).CrossRefGoogle Scholar
  22. [22]
    Neiland, V. Ya.: Towards a theory of separation of the laminar boundary layer in a supersonic stream, Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 4, (1969).Google Scholar
  23. [23]
    Messiter, A. F.: Boundary layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18, 241–257 (1970).MATHGoogle Scholar
  24. [24]
    Stewartson, K.: Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145–239 (1974).CrossRefADSGoogle Scholar
  25. [25]
    Smith, E. T: On the high Reynolds number theory of laminar flows. IMA J. Appl. Math. 28, 207–281 (1982).MATHADSGoogle Scholar
  26. [26]
    Messiter, A. E.: Boundary-layer interaction theory. ASME J. Appl. Mech. 50, 1104–1113 (1983).CrossRefMATHADSGoogle Scholar
  27. [27]
    Kluwick, A.: Stationäre, laminare wechselwirkende Reibungsschichten. Z. Flugwiss. Weltraumforsch. 3, 157–174 (1979).MATHGoogle Scholar
  28. [28]
    Kluwick, A.: Interacting boundary layers. Z. Angew. Math. Mech. 67, T3 - T13 (1987).Google Scholar
  29. [29]
    Ruban, A. I.: Akademia Nauk SSSR 18, 1253–1265, (1978).MATHMathSciNetGoogle Scholar
  30. [30]
    Burggraf, O.: Private communication (1980).Google Scholar
  31. [31]
    Kluwick, A.: On the nonlinear distortion of waves generated by interacting supersonic boundary layers. Acta Mech. 55, 177–189 (1985).CrossRefMathSciNetGoogle Scholar
  32. [32]
    Daniels, P. G.: Numerical and asymptotic solutions for the supersonic flow near the trailing edge of a flat plate. Q. J. Mech. Appl. Math. 27, 175–191 (1974).CrossRefMATHGoogle Scholar
  33. [33]
    Cramer, M. S.: Transonic flows of BZT fluids. Proceedings of the 13th World Congress on Computation and Applied Mathematics (IMACS 91), 570–571 (1991).Google Scholar
  34. [34]
    Messiter, A. E, Feo, A., Melnik, R. E.: Shock-wave strength for separation of a laminar boundary layer at transonic speeds. AIAA J. 9, 1197–1198 (1971).CrossRefADSGoogle Scholar
  35. [35]
    Bodonyi, R. J., Kluwick, A.: Freely interacting transonic boundary layers. Phys. Fluids 20, 1432–1437 (1977).CrossRefMATHADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Kluwick
    • 1
  1. 1.Institut für Strömungslehre und WärmeübertragungTechnische Universität WienWienAustria

Personalised recommendations