Advertisement

Imploding cylindrical temperature pulses in superfluid helium

  • W. Fiszdon
  • T. Olszok
  • G. Stamm
  • B. Noack
  • J. Piechna
Part of the Acta Mechanica book series (ACTA MECH.SUPP., volume 4)

Summary

Unlike in normal fluids the flow and heat transfer of cylindrical imploding temperature pulses in superfluid helium can be fairly easily investigated. This possibility was taken advantage of to study the influence of quantized vorticity on the flow process with strong geometric constraints and to check the validity of the simplified theoretical model and the numerical simulation procedure used. At weak heat pulses, when the linear approximation can be used, the analytical solution and the numerical procedure compare very well with the experimental results. For medium heat pulses, when quantum turbulence and non linearity become important, the qualitative agreement of the numerical simulations with experimental data is also very satisfactory, reproducing all the flow features and showing the strong interaction between the geometric and vorticity effects. However the quantitative differences are of the order of 20%.

Keywords

Heat Input Heated Surface Heat Pulse Rest Time Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Fiszdon, W, Schwerdtner, M. v., Stamm, G., Poppe, W: Temperature overshoot due to quantum turbulence during the evolution of moderate heat pulses in He II. J. Fluid Mech. 212, 663–684 (1990).CrossRefADSGoogle Scholar
  2. [2]
    Gorter, C. J., Mellink, J. H.: On the irreversible processes in liquid helium II. Physica XV, 285–304 (1949).Google Scholar
  3. [3]
    Khalatnikov, I. M.: Introduction to the theory of superfluidity. New York: Benjamin 1965.Google Scholar
  4. [4]
    Möhring, W, Fiszdon, W.: Converging axi-and spherically-symmetric top-hat pulses (in He II), accepted for publication in J. Sound Vibr.Google Scholar
  5. [5]
    Nemirovskii, S. K., Lebedev, V. V.: The hydrodynamics of superfluid turbulence. Soy. Phys. JETP 57 (1983), 1009–1016.Google Scholar
  6. [6]
    Noack, B. R., Fiszdon, W.: A numerical method of solution of the one-dimensional equations of turbulent second sound He II flows. MPI für Strömungsforsch., Göttingen, Bericht 102 /1990 (1990).Google Scholar
  7. [7]
    Olszok, T.: Experimente zur konvergenten zylindersymmetrischen Second-Sound-Ausbreitung in He II. MPI für Strömungsforsch., Göttingen, Bericht 9 /1992 (1992).Google Scholar
  8. [8]
    Putterman, S. J.: Superfluid hydrodynamics. Amsterdam: Elsevier 1974.Google Scholar
  9. [9]
    Schwerdtner, M. v.: Experimentelle Untersuchung zum transkritischen Wärmetransport in He II. Mitt. MPI für Strömungsforsch., Göttingen, Nr. 90 (1988).Google Scholar
  10. [10]
    Schwerdtner, M. v., Poppe, W, Schmidt, D. W: Distortion of temperature signals in He II due to probe geometry, and a new improved probe. Cryogenics 29, 132–134 (1989).CrossRefGoogle Scholar
  11. [11]
    Stamm, G.: Experimentelle Untersuchungen an konvergierenden Second-Sound-Stoßwellen in He II. Mitt. MPI für Strömungsforsch., Göttingen, Nr. 103 (1991).Google Scholar
  12. [12]
    Stamm, G., Olszok, T, Schwerdtner, M. v., Schmidt, D. W: Producing and recording converging second-sound shock waves, Cryogenics 32, 598–600 (1992).CrossRefADSGoogle Scholar
  13. [13]
    Swanson, C. E., Wagner, W. T, Donnelly, R. J., Barenghi, C. F.: Calculation of frequency-and velocity-dependent mutual friction parameters in helium II, J. Low Temp. Phys. 66, 263–276 (1987).CrossRefADSGoogle Scholar
  14. [14]
    Tough, J. T.: Superfluid Turbulence. In: Progress in Low Temperature Physics, vd 8. Amsterdam: North-Holland 1982.Google Scholar
  15. [15]
    Vinen, W. E: Mutual friction in a heat current helium II. III. Theory of mutual friction. Proc. Roy. Soc. London Ser. A 242, 493–515 (1957).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • W. Fiszdon
    • 1
  • T. Olszok
    • 1
  • G. Stamm
    • 1
  • B. Noack
    • 1
  • J. Piechna
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenFederal Republic of Germany

Personalised recommendations